Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38591442

ABSTRACT

Africa is the third-richest continent in the world in terms of bamboo species. Despite these laudable natural resources, most African countries still use asbestos cement board as one of their major building materials. This is chiefly due to the high cost of equipment and technologies associated with non-asbestos-fiber cement board production. The current research seeks to underscore the possibility of utilizing these massive continent resources for non-asbestos-fiber cement board production by employing the existing production process in the asbestos cement industries via an innovatively developed laboratory-simulated Hatschek process. Non-asbestos-fiber cement boards incorporating kraft and bamboo fibers were successfully produced in the laboratory using this innovative method based on Hatschek technology, with natural fibre addition in the range of 2-6 wt.%. Experimental results revealed that the Flexural strength and deflection of the board improved significantly, producing optimum values of 10.41 MPa and 2.0 mm, respectively for composite board reinforced with 10 wt.% and 6 wt.% of kraft pulp and bamboo fibers, respectively. The SEM morphology of the fractured surfaces revealed the mode of composite fracture as well as good interaction at the fiber-matrix interface. Overall, the mechanical properties of the developed composite boards satisfy the minimum requirements of relevant standards based on fiber cement flat sheets and can be employed for internal building applications in low-cost housing estates in developing countries. The outcome of this research indicates that the current industrial production process based on Hatschek technology can be employed for non-asbestos-fiber cement board production using the studied natural fiber.

2.
Sensors (Basel) ; 23(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37571728

ABSTRACT

Acoustic emission (AE) has received increased interest as a structural health monitoring (SHM) technique for various materials, including laminated polymer composites. Piezoelectric sensors, including PZT (piezoelectric ceramic) and PVDF (piezoelectric polymer), can monitor AE in materials. The thickness of the piezoelectric sensors (as low as 28 µm-PVDF) allows embedding the sensors within the laminated composite, creating a smart material. Incorporating piezoelectric sensors within composites has several benefits but presents numerous difficulties and challenges. This paper provides an overview of acoustic emission testing, concluding with a discussion on embedding piezoelectric AE sensors within fibre-polymer composites. Various aspects are covered, including the underlying AE principles in fibre-based composites, factors that influence the reliability and accuracy of AE measurements, methods to artificially induce acoustic emission, and the correlation between AE events and damage in polymer composites.

3.
Materials (Basel) ; 16(9)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37176179

ABSTRACT

This paper presents a finite element model for predicting the performance and failure behaviour of a hybrid joint assembling fibrous composites to a metal part with reinforcement micro pins for enhancing the damage tolerance performance. A unit-strip model using the cohesive elements at the bond interface is employed to simulate the onset and propagation of debonding cracks. Two different traction-separation laws for the interface cohesive elements are employed, representing the fracture toughness properties of the plain adhesive bond and a pin-reinforced interface, respectively. This approach can account for the large-scale crack-bridging effect of the pins. It avoids using concentrated pin forces in the numerical model, thus removing mesh-size dependency, and permitting more accurate and robust computational analysis. Lap joints reinforced with various pin arrays were tested under quasi-static load. Predicted load versus applied displacement relations are in good agreement with the test results, especially for the debonding onset and early stage of crack propagation.

4.
Sci Rep ; 13(1): 6583, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085553

ABSTRACT

Assessment of woodland restoration often focusses on stand demographics, but genetic factors likely influence long-term stand viability. We examined the genetic composition of Yellow Box (Eucalyptus melliodora) trees in endangered Box-Gum Grassy Woodland in SE Australia, some 30 years after planting with seeds of reportedly local provenance. Using DArT sequencing for 1406 SNPs, we compared genetic diversity and population structure of planted E. melliodora trees with remnant bushland trees, paddock trees and natural recruits. Genetic patterns imply that natural stands and paddock trees had historically high gene flow (among group pairwise FST = 0.04-0.10). Genetic diversity was highest among relictual paddock trees (He = 0.17), while diversity of revegetated trees was identical to natural bushland trees (He = 0.14). Bayesian clustering placed the revegetated trees into six genetic groups with four corresponding to genotypes from paddock trees, indicating that revegetated stands are mainly of genetically diverse, local provenance. Natural recruits were largely derived from paddock trees with some contribution from planted trees. A few trees have likely hybridised with other local eucalypt species which are unlikely to compromise stand integrity. We show that paddock trees have high genetic diversity and capture historic genetic variety and provide important foci for natural recruitment of genetically diverse and outcrossed seedlings.


Subject(s)
Forests , Plants , Bayes Theorem , Australia , Gene Flow , Genetic Variation , Ecosystem
5.
Rapid Commun Mass Spectrom ; 37(4): e9435, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36409295

ABSTRACT

RATIONALE: Isotope analysis can be used to investigate the diets of predators based on assimilation of nitrogen and carbon isotopes from prey. Recent work has shown that tissues taken from legs, antennae or abdomen of lobsters can give different indications of diet, but this has never been evaluated for Sagmariasus verreauxi (eastern rock lobster). Work is now needed to prevent erroneous conclusions being drawn about lobster food webs, and undertaking this work could lead to developing non-lethal sampling methodologies. Non-lethal sampling for lobsters is valuable both ethically and for areas of conservation significance such as marine reserves. METHOD: We evaluated this by dissecting 76 lobsters and comparing δ13 C and δ15 N isotope values in antennae, leg and abdomen tissue from the same individuals ranging from 104 to 137 mm carapace length. Stable isotope values were determined using a Europa EA GSL elemental analyser coupled with Hydra 20-20 Isoprime IRMS. RESULTS: We found the abdomen δ13 C values to be lower than other tissues by 0.3 ± 0.2‰ for antennae tissue and 0.1 ± 0.2‰ δ13 C for leg tissues, whereas for δ15 N, no significant difference between tissues was observed. There was no significant effect of lobster size or sex, though we did observe interactions between month and tissue type, indicating that differences may be seasonal. Importantly, the detected range of isotopic variability between tissues is within the range of uncertainty used for discrimination factors in isotopic Bayesian modelling of 0‰-1.0‰ for δ13 C and 3.0‰-4.0‰ for δ15 N. CONCLUSIONS: We show that S. verreauxi can be sampled non-lethally with mathematical corrections applied for δ13 C, whereas any tissue is suitable for δ15 N. Our results indicate that a walking leg is most favourable and would also be the least intrusive for the lobster. The application of non-lethal sampling provides avenues for the contribution of citizen science to understanding lobster food webs and to undertake fieldwork in ecologically sensitive areas such as marine reserves.


Subject(s)
Diet , Nutritional Status , Humans , Bayes Theorem , Nitrogen Isotopes/analysis , Carbon Isotopes/analysis
6.
Sci Rep ; 12(1): 7504, 2022 May 07.
Article in English | MEDLINE | ID: mdl-35525864

ABSTRACT

Failure in an epoxy polymer composite material is prone to initiate by the coalescence of microcracks in its polymer matrix. As such, matrix toughening via addition of a second phase as rigid or/and rubber nano/micro-particles is one of the most popular approaches to improve the fracture toughness across multiple scales in a polymer composite, which dissipates fracture energy via deformation mechanisms and microcracks arrest. Few studies have focused on tailorable and variable toughening, so-called 'active toughening', mainly suggesting thermally induced strains which offer slow and irreversible toughening due to polymer's poor thermal conductivity. The research presented in the current article has developed an instantaneous, reversible extrinsic strain field via remote electromagnetic radiation. Quantification of the extrinsic strain evolving in the composite with the microwave energy has been conducted using in-situ real-time fibre optic sensing. A theoretical constitutive equation correlating the exposure energy to micro-strains has been developed, with its solution validating the experimental data and describing their underlying physics. The research has utilised functionalised dielectric ferroelectric nanomaterials, barium titanate (BaTiO3), as a second phase dispersed in an epoxy matrix, able to introduce microscopic electro-strains to their surrounding rigid epoxy subjected to an external electric field (microwaves, herein), as result of their domain walls dipole displacements. Epoxy Araldite LY1564, a diglycidyl ether of bisphenol A associated with the curing agent Aradur 3487 were embedded with the BaTiO3 nanoparticles. The silane coupling agent for the nanoparticles' surface functionalisation was 3-glycidoxypropyl trimethoxysilane (3-GPS). Hydrogen peroxide (H2O2, 30%) and acetic acid (C2H4O2, 99.9%) used as functionalisation aids, and the ethanol (C2H6O, 99.9%) used for BaTiO3 dispersion. Firstly, the crystal microstructure of the functionalised nanoparticles and the thermal and dielectric properties of the achieved epoxy composite materials have been characterised. It has been observed that the addition of the dielectric nanoparticles has a slight impact on the curing extent of the epoxy. Secondly, the surface-bonded fibre Bragg grating (FBG) sensors have been employed to investigate the real-time variation of strain and temperature in the epoxy composites exposed to microwaves at 2.45 GHz and at different exposure energy. The strains developed due to the in-situ exposure at composite, adhesive and their holding fixture material were evaluated using the FBG. The domain wall induced extrinsic strains were distinguished from the thermally induced strains, and found that the increasing exposure energy has an instantaneously increasing effect on the development of such strains. Post-exposure Raman spectra showed no residual field in the composite indicating no remnant strain field examined under microwave powers < 1000 W, thus suggesting a reversible strain introduction mechanism, i.e. the composite retaining its nominal properties post exposure. The dielectric composite development and quantifications presented in this article proposes a novel active toughening technology for high-performance composite applications in numerous sectors.

8.
Sci Rep ; 10(1): 16833, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33033357

ABSTRACT

Carbon nanotubes (CNTs) embedded polymers are of increasing interest to scientific and industrial communities for multi-functional applications. In this article, CNTs have been introduced to high-strength epoxy adhesive for enabling in-situ strain sensing in adhesively bonded aluminium-to-aluminium single-lap joints to accurately indicate the onset and propagation of adhesion failure to the evolution of piezo-resistivity in varying mechanical loads. The CNT modified adhesive in bonded joints and the CNT modified adhesive alone have been tested under monothonic and cyclic tensile loads up to ultimate failure. The changes in the piezo-resistivity induced by the CNTs have been monitored in situ with respect to loading. A novel interpretation method has been developed for progressive, instantaneous adhesion failure estimation under cyclic tensile stresses from a resistivity baseline. The method indicates that the in-situ resistivity changes and the rate of the changes with strain, i.e. sensitivity, strongly correlate with the adhesion failure progression, irrespective of the CNT dispersion quality. Moreover, the effect of bond thickness on the evolution of piezo-resistivity and adhesion failure have been studied. It was observed that relatively thin adhesive bonds (0.18 mm thickness), possessing higher CNT contact points than thick bonds (0.43 mm thickness), provide 100 times higher sensitivity to varying cyclic loads.

9.
J Hered ; 110(6): 738-745, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31318029

ABSTRACT

Clonality may provide reproductive assurance for many threatened plants while limiting sexual reproductive success either through energetic tradeoffs or because clones are self-incompatible. Most stands of the Australian arid-zone plant Acacia carneorum, flower annually but low seed set and an absence of sexual recruitment now suggest that this species and other, important arid-zone ecosystem engineers may have low genotypic diversity. Indeed, our recent landscape-scale genetic study revealed that stands are typically monoclonal, with genets usually separated by kilometers. An inability to set sexually produced seed or a lack of genetically diverse mates may explain almost system-wide reproductive failure. Here, using microsatellite markers, we genotyped 100 seeds from a rare fruiting stand (Middle-Camp), together with all adult plants within it and its 4 neighboring stands (up to 5 km distant). As expected, all stands surveyed were monoclonal. However, the Middle-Camp seeds were generated sexually. Comparing seed genotypes with the single Middle-Camp genotype and those of genets from neighboring and other regional stands (n = 26), revealed that 73 seeds were sired by the Middle-Camp genet. Within these Middle-Camp seeds we detected 19 genotypes in proportions consistent with self-fertilization of that genet. For the remaining 27 seeds, comprising 8 different genotypes, paternity was assigned to the nearest neighboring stands Mallee and Mallee-West, approximately 1 km distant. Ironically, given this species' vast geographic range, a small number of stands with reproductively compatible near neighbors may provide the only sources of novel genotypes.


Subject(s)
Acacia/genetics , Endangered Species , Genetics, Population , Pollination , Alleles , Australia , Genetic Variation , Genotype , Germination
10.
Mol Ecol ; 27(7): 1541-1555, 2018 04.
Article in English | MEDLINE | ID: mdl-29533477

ABSTRACT

Many plant species have pollination and seed dispersal systems and evolutionary histories that have produced strong genetic structuring. These genetic patterns may be consistent with expectations following recent anthropogenic fragmentation, making it difficult to detect fragmentation effects if no prefragmentation genetic data are available. We used microsatellite markers to investigate whether severe habitat fragmentation may have affected the structure and diversity of populations of the endangered Australian bird-pollinated shrub Grevillea caleyi R.Br., by comparing current patterns of genetic structure and diversity with those of the closely related G. longifolia R.Br. that has a similar life history but has not experienced anthropogenic fragmentation. Grevillea caleyi and G. longifolia showed similar and substantial population subdivision at all spatial levels (global F'ST  = 0.615 and 0.454; Sp  = 0.039 and 0.066), marked isolation by distance and large heterozygous deficiencies. These characteristics suggest long-term effects of inbreeding in self-compatible species that have poor seed dispersal, limited connectivity via pollen flow and undergo population bottlenecks because of periodic fires. Highly structured allele size distributions, most notably in G. caleyi, imply historical processes of drift and mutation were important in isolated subpopulations. Genetic diversity did not vary with population size but was lower in more isolated populations for both species. Through this comparison, we reject the hypothesis that anthropogenic fragmentation has impacted substantially on the genetic composition or structure of G. caleyi populations. Our results suggest that highly self-compatible species with limited dispersal may be relatively resilient to the genetic changes predicted to follow habitat fragmentation.


Subject(s)
Conservation of Natural Resources , Genetic Variation , Human Activities , Proteaceae/genetics , Alleles , Australia , Geography , Humans , Phylogeny , Population Density , Principal Component Analysis
11.
Ecol Evol ; 7(22): 9451-9460, 2017 11.
Article in English | MEDLINE | ID: mdl-29187981

ABSTRACT

Long-lived, widespread plant species are expected to be genetically diverse, reflecting the interaction between large population sizes, overlapping generations, and gene flow. Such species are thought to be resilient to disturbance, but may carry an extinction debt due to reproductive failure. Genetic studies of Australian arid zone plant species suggest an unusually high frequency of asexuality, polyploidy, or both. A preliminary AFLP genetic study implied that the naturally fragmented arid zone tree, Acacia carneorum, is almost entirely dependent on asexual reproduction through suckering, and stands may have lacked genetic diversity and interconnection even prior to the onset of European pastoralism. Here we surveyed microsatellite genetic variation in 20 stands to test for variation in life histories and further assessed the conservation status of the species by comparing genetic diversity within protected stands in National Parks and disturbed range lands. Using herbarium records, we estimate that 219 stands are extant, all of which occur in the arid zone, west of the Darling River in southeastern Australia. With two exceptions, all surveyed stands comprised only one multilocus genet and at least eight were putatively polyploid. Although some stands comprise thousands of stems, our findings imply that the species as a whole may represent ~240 distinct genetic individuals, many of which are polyploid, and most are separated by >10 km of unsuitable habitat. With only 34% of stands (and therefore genets) occurring within conservation reserves, A. carneorum may be at much greater risk of extinction than inferred from on-ground census data. Land managers should prioritize on-ground preservation of the genotypes within existing reserves, protecting both vegetative suckers and seedlings from herbivory. Importantly, three stands are known to set viable seed and should be used to generate genetically diverse germ-plasm for ex situ conservation, population augmentation, or translocation.

12.
Oecologia ; 185(2): 221-231, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28887644

ABSTRACT

Mangrove forests worldwide undergo anthropogenic fragmentation that may threaten their existence, and yet there have been few tests of the effects of fragmentation on demographic processes critical for mangrove regeneration. Predicting the effects of habitat fragmentation on mangroves is problematic as pollinators may move more freely across water than terrestrial habitat, and propagules can be widely dispersed by water. Here, within each of two estuaries, we compared pollinator diversity and activity, reproductive effort and output, and rates of recruitment for sets of three large (>1500 trees), medium (300-500) and small (<50) stands. As predicted, most measures of reproductive activity and success were inversely related to stand size with large stands typically producing significantly more and larger fruit, and significantly more seedlings. Most strikingly, we found the effect of fragmentation on the abundance of pollinators (honeybees), the production and quality of fruit and the survival rate of seedlings to be similar, showing significant reduction of recruitment in small stands. This study provides the first rigorous evidence that recruitment of mangroves, like for many terrestrial plants, is negatively impacted by habitat fragmentation. From a management perspective, we argue that in the short term our data imply the importance of conserving the largest possible stands. However, additional work is needed to determine (1) the proportion of recruits within small stands that originate within large stands, (2) how seedling performance varies with fruit size and genotype, and (3) how seedling size and performance vary with the abundance and diversity of pollen.


Subject(s)
Ecosystem , Fruit/growth & development , Pollination/physiology , Trees/physiology , Urbanization , Wetlands , Animals , Australia , Bees/growth & development , Reproduction , Seedlings , Trees/growth & development
13.
Ecology ; 97(11): 3009-3018, 2016 11.
Article in English | MEDLINE | ID: mdl-27870036

ABSTRACT

The production of morphologically different seeds or fruits by the same individual plant is known as seed heteromorphism. Such variation is expected to be selected for in disturbance-prone environments to allow germination into inherently variable regeneration niches. However, there are few demonstrations that heteromorphic seed characteristics should be favored by selection or how they may be maintained. In fire-prone ecosystems, seed heteromorphism is found in the temperatures needed to break physical dormancy, with seeds responding to high or low temperatures, ensuring emergence under variable fire-regime-related soil heating. Because of the relationship between dormancy-breaking temperature thresholds and fire severity, we hypothesize that different post-fire resource conditions have selected for covarying seedling traits, which contribute to maintenance of such heteromorphism. Seeds with low thresholds emerge into competitive conditions, either after low-severity fire or in vegetation gaps, and are therefore likely to experience selection for seedling characteristics that make them good competitors. On the other hand, high-temperature-threshold seeds would emerge into less competitive environments, indicative of stand-clearing high-severity fires, and would not experience the same selective forces. We identified high and low-threshold seed morphs via dormancy-breaking heat treatments and germination trials for two study species and compared seed mass and other morphological characteristics between morphs. We then grew seedlings from the two different morphs, with and without competition, and measured growth and biomass allocation as indicators of seedling performance. Seedlings from low-threshold seeds of both species performed better than their high-threshold counterparts, growing more quickly under competitive conditions, confirming that different performance can result from this seed characteristic. Seed mass or appearance did not differ between morphs, indicating that dormancy-breaking temperature threshold variation is a form of cryptic heteromorphism. The potential shown for the selective influence of different post-fire environmental conditions on seedling performance provides evidence of a mechanism for the maintenance of heteromorphic variation in dormancy-breaking temperature thresholds.


Subject(s)
Ecosystem , Fires , Seedlings , Seeds/physiology , Australia , Germination
14.
J Hered ; 107(7): 670-673, 2016.
Article in English | MEDLINE | ID: mdl-27707771

ABSTRACT

Black Drummer (Girella elevata) is a long-lived fish species that experiences considerable recreational fishing pressure, although managers lack a clear understanding of stock structure and dispersal patterns that are essential for the design, implementation, and administration of fisheries stock management. We used 454 sequencing to identify and develop 11 microsatellite primer pairs from 31 G. elevata All loci were found to be polymorphic, with the number of alleles detected ranging from 4 to 8 and observed heterozygosity ranging from 0.19 to 0.87. These markers will be used to assess the genetic diversity and connectivity throughout the range of G. elevata, which can assist in the development of population management strategies.


Subject(s)
Fishes/classification , Fishes/genetics , Genetic Variation , Microsatellite Repeats , Polymorphism, Genetic , Animals , Australia , High-Throughput Nucleotide Sequencing
15.
Appl Plant Sci ; 3(4)2015 Apr.
Article in English | MEDLINE | ID: mdl-25909043

ABSTRACT

PREMISE OF THE STUDY: Microsatellite markers were developed for the common arid Australian shrub Acacia ligulata (Fabaceae) and the threatened overstory trees A. melvillei and A. pendula. METHODS AND RESULTS: DNA sequence data generated by 454 sequencing were used to identify microsatellite nucleotide repeat motifs. Including previously developed primer sets, we report on the development of 10 polymorphic microsatellite loci for each species. Six of these were novel for A. melvillei and A. ligulata, and five were novel for A. pendula, while five more each were transferred from primers developed for related species (A. carneorum and A. loderi). We found three to 17 alleles per locus for each species, with high multilocus genotypic diversity within each of two A. ligulata and A. pendula stands, and one A. melvillei population. A second A. melvillei stand appeared to be monoclonal. CONCLUSIONS: These markers will allow assessment of population genetics, mating systems, and connectedness of populations of these and possibly other arid-zone acacias.

16.
Ann Bot ; 108(1): 185-95, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21546431

ABSTRACT

BACKGROUND AND AIMS: Plants show patterns of spatial genetic differentiation reflecting gene flow mediated by pollen and seed dispersal and genotype × environment interactions. If patterns of genetic structure are determined largely by gene flow then they may be useful in predicting the likelihood of inbreeding or outbreeding depression but should be less useful if there is strong site-specific selection. For many Australian plants little is known about either their population genetics or the effects on mating systems of variation in pollen transfer distances. Experimental pollinations were used to compare the reproductive success of bird-adapted Grevillea mucronulata plants mated with individuals from a range of spatial scales. A hierarchical survey of microsatellite DNA variation was also conducted to describe the scale of population differentiation for neutral markers. METHODS: The effects of four pollen treatments on reproductive performance were compared. These treatments were characterized by transfer of pollen from (a) neighbouring adults; (b) an adjacent cluster of adults (30-50 m distant); (c) a distant cluster (>5 km distant); and (d) open pollination. Sets of 17·9 ± 3·3 leaves from each of 15 clusters of plants were genotyped and spatial autocorrelation and F statistics were used to describe patterns of genetic structure. KEY RESULTS: Grevillea mucronulata displayed evidence of both inbreeding and outbreeding depression, with 'intermediate' pollen producing consistently superior outcomes for most aspects of fitness including seed set, seed size, germination and seedling growth. Significant genotypic structuring was detected within clusters (spatial autocorrelation) and among adjacent clusters and clusters separated by >5 km distance (F(ST) = 0·07 and 0·10). CONCLUSIONS: The superior outcome of intermediate pollen transfer and genetic differentiation of adjacent clusters suggests that G. mucronulata selection disfavours matings among closely and distantly related neighbours. Moreover, the performance of open-pollinated seedlings was poor, implying that current mating patterns are suboptimal.


Subject(s)
Genetic Fitness/physiology , Genetic Variation , Pollen/physiology , Proteaceae/physiology , Seed Dispersal/physiology , Seeds/physiology , Animals , Australia , Birds/physiology , Breeding , DNA, Plant/genetics , Environment , Gene Flow , Genetics, Population , Genotype , Germination/genetics , Linkage Disequilibrium , Microsatellite Repeats/genetics , Pollen/genetics , Pollination , Proteaceae/genetics , Reproduction , Seedlings/genetics , Seeds/genetics
17.
Mol Ecol ; 20(11): 2367-79, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21375638

ABSTRACT

The frequency of hybridization in plants is context dependent and can be influenced by the local mating environment. We used progeny arrays and admixture and pollen dispersal analyses to assess the relative importance of pre-mating reproductive barriers and the local demographic environment as explanations of variation in hybrid frequency in three mapped hybrid zones of Eucalyptus aggregata and E. rubida. A total of 731 open-pollinated progeny from 36 E. aggregata maternal parents were genotyped using six microsatellite markers. Admixture analysis identified substantial variation in hybrid frequency among progeny arrays (0-76.9%). In one hybrid zone, hybrid frequency was related to pre-mating barriers (degree of flowering synchrony) and demographic components of the local mating environment (decreasing population size, closer proximity to E. rubida and hybrid trees). At this site, average pollen dispersal distance was less and almost half (46%) of the hybrid progeny were sired by local E. rubida and hybrid trees. In contrast, at the other two sites, pre-mating and demographic factors were not related to hybrid frequency. Compared to the first hybrid zone where most of the E. rubida (76%) and all hybrids flowered, in the remaining sites fewer E. rubida (22-41%) and hybrid trees (0-50%) flowered and their reproductive success was lower (sired 0-23% of hybrids). As a result, most hybrids were sired by external E. rubida/hybrids located at least 2-3 km away. These results indicate that although pre-mating barriers and local demography can influence patterns of hybridization, their importance can depend upon the scale of pollen dispersal.


Subject(s)
Eucalyptus/growth & development , Eucalyptus/genetics , Hybridization, Genetic , Flowers/genetics , Gene Pool , Geography , New South Wales , Pollen/physiology , Population Dynamics , Reproduction/genetics , Seed Dispersal/physiology , Trees/physiology
18.
Mol Ecol ; 19(13): 2640-50, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20546132

ABSTRACT

Many plants regenerate after fire from a canopy-stored seed bank, in which seed are housed in fire resistant confructescences (cones) that remain on maternal plants. This strategy would be favoured if plants accumulate a sufficiently large and genetically diverse seed bank during interfire intervals. We use a 16-year demographic study and surveys of microsatellite variation to quantify and explain the rate of accumulation of genetic diversity within the canopy seed bank of the shrub Banksia spinulosa. Flowering and fruit set were highly variable. An initial sample in 1991 of 354 reproductively mature plants generated 426 cones over 16 years, of which only 55 cones from 40 maternal plants persisted until 2005. By genotyping seed from these 55 cones we demonstrated that genetic diversity accumulated rapidly within the seed bank. Resampling revealed that diversity was determined by the number, not the age, of cones. Cones were widely distributed among plants, outcrossing rates were high (mean t(m) = 1.00 +/- 0.04) and biparental inbreeding low. Adults displayed little evidence of isolation by distance and the genotypic diversity of seed cohorts was independent of the density of neighbouring potential sires. We therefore estimate that within at least 13 individual years the number of cones produced per year (14-63) would have contained 100% of the adult genetic diversity. We conclude that a highly outcrossed mating system and relatively widespread pollen dispersal ensure the rapid development of a genetically diverse and spatially and temporally homogeneous seed bank.


Subject(s)
Genetic Variation , Genetics, Population , Proteaceae/genetics , Seeds/genetics , Australia , DNA, Plant/genetics , Flowers/growth & development , Fruit/growth & development , Genotype , Microsatellite Repeats , Reproduction/genetics , Sequence Analysis, DNA
19.
Mol Ecol ; 19(3): 508-20, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20070520

ABSTRACT

Populations of obligately estuarine taxa are potentially small and isolated and may lack genetic variation and display regional differentiation as a result of drift and inbreeding. Hybridization with a wide-ranging marine congener should introduce genetic variation and reduce the effects of inbreeding depression and genetic drift. However, high levels of hybridization can cause demographic and genetic swamping. In southeastern Australia hybridization occurs between obligately estuarine Black bream (Acanthopagrus butcheri) and migratory marine Yellowfin bream (Acanthopagrus australis). Here, we surveyed genetic variation at eight microsatellite loci and the mitochondrial control region of juvenile fish from five coastal lagoons (including temporal replication in two lagoons) (total n = 970) to determine the frequency and persistence of hybridization, and its likely consequence for the estuarine restricted A. butcheri. Of 688 juvenile fish genotyped 95% were either A. australis (347) or hybrids (309); only 5% (32) were A. butcheri. Most hybrids were later generation hybrids or A. butcheri backcrosses, which are likely multi-generational residents within lagoons. Far greater proportions of hybrid juveniles were found within two lagoons that are generally closed to the ocean (>90% hybrid fish within generally closed lagoons vs. 12-27% in permanently or intermittently open lagoons). In both lagoons, this was consistent across multiple cohorts of fish [79-97% hybrid fish (n = 282)]. Hybridization and introgression represent a major threat to the persistence of A. butcheri and have yet to be investigated for large numbers of estuarine taxa.


Subject(s)
Genetics, Population , Hybridization, Genetic , Perciformes/genetics , Animals , Australia , Chimera , DNA, Mitochondrial/genetics , Genetic Variation , Genotype , Geography , Microsatellite Repeats , Models, Genetic , Sequence Analysis, DNA
20.
Ann Bot ; 103(9): 1395-401, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19403627

ABSTRACT

BACKGROUND AND AIMS: In Australia, honey-bees have invaded systems that evolved without social insect pollinators, where many plants are adapted to vertebrate pollination. Behavioural differences between pollinators are likely to influence mating patterns, but few studies have examined this empirically in long-lived, woody, perennials. It was shown previously that outcrossing rates in Grevillea macleayana vary among populations. Here tests were conducted to determine whether the behaviour of birds and honey-bees differed between a population previously found to be highly outcrossed and two inbreeding populations. METHODS: Visit frequencies and movement patterns of the visitors to inflorescences at three sites over two seasons were compared. A caging experiment was used to test the effects of excluding birds on pollen removal from newly opened flowers and on pollen deposition on stigmas that had been washed clean. KEY RESULTS: Honey-bees were the most frequent visitors overall, but honeyeaters were more frequent visitors in the population previously found to have a high outcrossing rate than they were in either of the other populations. More visits by honeyeaters were from distant plants. Pollen removal did not vary greatly among sites, and was not affected by bird exclusion; however, more pollen was deposited on the stigmas of cleaned pollen presenters in the population previously observed to be highly outcrossing than in the other two. This high level of pollen deposition was reduced by experimental bird exclusion. CONCLUSIONS: Honey-bees were the most frequent visitors, by an order of magnitude, and excluding vertebrates revealed that bees were removing most of the pollen but deposited fewer pollen grains on stigmas. Birds were more frequent visitors at the site previously found to be outcrossing than the other two sites, and they moved further between plants and visited fewer inflorescences on a plant during a foraging bout than bees did. These characteristics of bird visits to G. macleayana would be sufficient to produce significant variation in outcrossing rates among sites.


Subject(s)
Bees/physiology , Behavior, Animal/physiology , Birds/physiology , Pollination/physiology , Proteaceae/physiology , Analysis of Variance , Animals , Honey , Pollen/physiology , Reproduction , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...