Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Invertebr Pathol ; 205: 108144, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810835

ABSTRACT

Temperature fluctuations, particularly elevated temperatures, can significantly affect immune responses. These fluctuations can influence the immune system and alter its response to infection signals, such as lipopolysaccharide (LPS). Therefore, this study was designed to investigate how high temperatures and LPS injections collectively influence the immune system of the crab Neohelice granulata. Two groups were exposed to 20 °C (control) or 33 °C for four days. Subsequently, half were injected with 10 µL of physiological crustacean (PS), while the rest received 10 µL of LPS [0.1 mg.kg-1]. After 30 min, the hemolymph samples were collected. Hemocytes were then isolated and assessed for various parameters using flow cytometry, including cell integrity, DNA fragmentation, total hemocyte count (THC), differential hemocyte count (DHC), reactive oxygen species (ROS) level, lipid peroxidation (LPO), and phagocytosis. Results showed lower cell viability at 20 °C, with more DNA damage in the same LPS-injected animals. There was no significant difference in THC, but DHC indicated a decrease in hyaline cells (HC) at 20 °C following LPS administration. In granular cells (GC), an increase was observed after both PS and LPS were injected at the same temperature. In semi-granular cells (SGC), there was a decrease at 20 °C with the injection of LPS, while at a temperature of 33 °C, the SGC there was a decrease only in SGC injected with LPS. Crabs injected with PS and LPS at 20 °C exhibited higher levels of ROS in GC and SGC, while at 33 °C, the increase was observed only in GC and SGC cells injected with LPS. A significant increase in LPO was observed only in SGC cells injected with PS and LPS at 20 °C and 33 °C. Phagocytosis decreased in animals at 20 °C with both injections and exposed to 33 °C only in those injected with LPS. These results suggest that elevated temperatures induce changes in immune system parameters and attenuate the immune responses triggered by LPS.


Subject(s)
Brachyura , Hemocytes , Hot Temperature , Lipopolysaccharides , Animals , Hemocytes/drug effects , Lipopolysaccharides/pharmacology , Brachyura/immunology , Brachyura/drug effects , Phagocytosis/drug effects , Reactive Oxygen Species/metabolism
2.
Article in English | MEDLINE | ID: mdl-33144155

ABSTRACT

Climate changes affecting aquatic environments are increasing, and the resultant environmental challenges require animals to adopt alternative compensatory behavioral and physiological strategies. In particular, low levels of dissolved O2 are a regular problem for estuarine animals, leading to activation of a series of behavioral and physiological responses. This study on the semi-terrestrial crab Neohelice granulata examined patterns of emersion behavior under different levels of dissolved O2 availability and the role of lactate in this behavior. Emersion behavior was recorded for 4.5 h for crabs in water at four different levels of dissolved O2 (6, 3, 2, and 1 mg O2/L) and with free access to air. Oxygen consumption and hemolymphatic lactate levels were measured using the same experimental design. Emersion behavior was also recorded for 70 min in normoxic water after lactate or saline injections. Crabs increased their emersion behavior only in severe hypoxia (1 mg O2/L), and O2 consumption decreased under more severe hypoxic conditions. Despite the increase in emersion behavior, which leads to higher O2 availability, an increase in hemolymphatic lactate levels indicates that the animals still need to resort to anaerobic pathways to fulfill their metabolic demand. Furthermore, animals injected with lactate showed higher emersion behaviors than animals injected with a saline solution even in normoxia. These results suggest that the increase in hemolymphatic lactate can act directly or indirectly as a trigger for the increase in emersion behavior in the semi-terrestrial crab N. granulata.


Subject(s)
Brachyura/physiology , Hypoxia/metabolism , Lactic Acid/metabolism , Animals , Male , Oxygen Consumption
3.
J Therm Biol ; 91: 102617, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32716867

ABSTRACT

An increase in environmental temperature can deleteriously affect organisms. This study investigated whether the semiterrestrial estuarine crab Neohelice granulata uses emersion behavior as a resource to avoid thermal stress and survive higher aquatic temperatures. We also examined whether this behavior is modulated by exposure to high temperature; whether, during the period of emersion, the animal loses heat from the carapace to the medium; and whether this behavior is altered by the temperature at which the animal has been acclimated. The lethal temperature for 50% of the population (LT50) was determined through 96-h mortality curves in animals acclimated at 20 °C and 30 °C. The behavioral profile of N. granulata during thermal stress was based on monitoring crab movement in aerial, intermediary, and aquatic zones. Acclimation at a higher temperature and the possibility of emersion increased the thermotolerance of the crabs and the synergistic effect of acclimation temperature. The possibility of leaving the hot water further increased the resistance of these animals to thermal stress. We observed that when the crab was subjected to thermal stress conditions, it spent more time in the aerial environment, unlike under control conditions. Under the experimental conditions, it made small incursions into the aquatic environment and stayed in the aerial environment for a longer time in order to cool its body temperature. The animals acclimated at 20 °C and placed into water at 35 °C remained in the aerial zone. The animals acclimated and maintained at 30 °C (control) that were placed in water at 35 °C with the possibility of emerging into hot air transited more frequently between the aquatic and aerial zones than did the animals that were put in water at 35 °C with the possibility of emerging into a cooler air environment. We conclude that emergence behavior allows N. granulata to survive high temperatures and that this behavior is influenced by acclimation temperature.


Subject(s)
Behavior, Animal , Brachyura/physiology , Thermotolerance , Animals , Movement
SELECTION OF CITATIONS
SEARCH DETAIL
...