Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Biol Chem ; 290(45): 27261-27270, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26359499

ABSTRACT

JAK (Janus family of cytoplasmic tyrosine kinases) family tyrosine kinase 2 (TYK2) participates in signaling through cytokine receptors involved in immune responses and inflammation. JAKs are characterized by dual kinase domain: a tyrosine kinase domain (JH1) that is preceded by a pseudokinase domain (JH2). The majority of disease-associated mutations in JAKs map to JH2, demonstrating its central regulatory function. JH2s were considered catalytically inactive, but JAK2 JH2 was found to have low autoregulatory catalytic activity. Whether the other JAK JH2s share ATP binding and enzymatic activity has been unclear. Here we report the crystal structure of TYK2 JH2 in complex with adenosine 5'-O-(thiotriphosphate) (ATP-γS) and characterize its nucleotide binding by biochemical and biophysical methods. TYK2 JH2 did not show phosphotransfer activity, but it binds ATP and the nucleotide binding stabilizes the protein without inducing major conformational changes. Mutation of the JH2 ATP-binding pocket increased basal TYK2 phosphorylation and downstream signaling. The overall structural characteristics of TYK2 JH2 resemble JAK2 JH2, but distinct stabilizing molecular interactions around helix αAL in the activation loop provide a structural basis for differences in substrate access and catalytic activities among JAK family JH2s. The structural and biochemical data suggest that ATP binding is functionally important for both TYK2 and JAK2 JH2s, whereas the regulatory phosphorylation appears to be a unique property of JAK2. Finally, the co-crystal structure of TYK2 JH2 complexed with a small molecule inhibitor demonstrates that JH2 is accessible to ATP-competitive compounds, which offers novel approaches for targeting cytokine signaling as well as potential therapeutic applications.


Subject(s)
TYK2 Kinase/chemistry , TYK2 Kinase/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Enzyme Activation , Enzyme Stability , Humans , Janus Kinase 1/chemistry , Janus Kinase 2/chemistry , Models, Molecular , Molecular Sequence Data , Mutation , Phosphorylation , Protein Conformation , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Structural Homology, Protein , TYK2 Kinase/genetics
2.
J Med Chem ; 57(8): 3430-49, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24641103

ABSTRACT

We describe the structural optimization of a lead compound 1 that exhibits dual inhibitory activities against FLT3 and CDK4. A series of pyrido[4',3':4,5]pyrrolo[2,3-d]pyrimidine derivatives was synthesized, and SAR analysis, using cell-based assays, led to the discovery of 28 (AMG 925), a potent and orally bioavailable dual inhibitor of CDK4 and FLT3, including many FLT3 mutants reported to date. Compound 28 inhibits the proliferation of a panel of human tumor cell lines including Colo205 (Rb(+)) and U937 (FLT3(WT)) and induced cell death in MOLM13 (FLT3(ITD)) and even in MOLM13 (FLT3(ITD, D835Y)), which exhibits resistance to a number of FLT3 inhibitors currently under clinical development. At well-tolerated doses, compound 28 leads to significant growth inhibition of MOLM13 xenografts in nude mice, and the activity correlates with inhibition of STAT5 and Rb phosphorylation.


Subject(s)
Cyclin-Dependent Kinase 4/antagonists & inhibitors , Heterocyclic Compounds, 3-Ring/chemical synthesis , Naphthyridines/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cytochrome P-450 CYP3A , Cytochrome P-450 CYP3A Inhibitors , Dogs , Drug Discovery , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Macaca fascicularis , Naphthyridines/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Rats , Structure-Activity Relationship , U937 Cells , fms-Like Tyrosine Kinase 3/genetics
3.
Bioorg Med Chem Lett ; 23(5): 1238-44, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23374866

ABSTRACT

The discovery, structure-based design, synthesis, and optimization of NIK inhibitors are described. Our work began with an HTS hit, imidazopyridinyl pyrimidinamine 1. We utilized homology modeling and conformational analysis to optimize the indole scaffold leading to the discovery of novel and potent conformationally constrained inhibitors such as compounds 25 and 28. Compounds 25 and 31 were co-crystallized with NIK kinase domain to provide structural insights.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Alkynes/chemical synthesis , Alkynes/chemistry , Alkynes/pharmacology , Amines/chemical synthesis , Amines/chemistry , Amines/pharmacology , Drug Design , HT29 Cells , Humans , Hydrogen Bonding , Imidazoles/chemical synthesis , Imidazoles/chemistry , Imidazoles/pharmacology , Models, Molecular , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Structure-Activity Relationship , NF-kappaB-Inducing Kinase
4.
J Biol Chem ; 287(33): 27326-34, 2012 Aug 10.
Article in English | MEDLINE | ID: mdl-22718757

ABSTRACT

NF-κB-inducing kinase (NIK) is a central component in the non-canonical NF-κB signaling pathway. Excessive NIK activity is implicated in various disorders, such as autoimmune conditions and cancers. Here, we report the first crystal structure of truncated human NIK in complex with adenosine 5'-O-(thiotriphosphate) at a resolution of 2.5 Å. This truncated protein is a catalytically active construct, including an N-terminal extension of 60 residues prior to the kinase domain, the kinase domain, and 20 residues afterward. The structure reveals that the NIK kinase domain assumes an active conformation in the absence of any phosphorylation. Analysis of the structure uncovers a unique role for the N-terminal extension sequence, which stabilizes helix αC in the active orientation and keeps the kinase domain in the catalytically competent conformation. Our findings shed light on the long-standing debate over whether NIK is a constitutively active kinase. They also provide a molecular basis for the recent observation of gain-of-function activity for an N-terminal deletion mutant (ΔN324) of NIK, leading to constitutive non-canonical NF-κB signaling with enhanced B-cell adhesion and apoptosis resistance.


Subject(s)
Protein Serine-Threonine Kinases/chemistry , Thionucleotides/chemistry , Apoptosis/physiology , B-Lymphocytes/enzymology , Cell Adhesion/physiology , Cell Line , Crystallography, X-Ray , Humans , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Deletion , Thionucleotides/metabolism , NF-kappaB-Inducing Kinase
5.
Anal Biochem ; 367(2): 179-89, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17592719

ABSTRACT

Several drugs inhibiting protein kinases have been launched successfully, demonstrating the attractiveness of protein kinases as therapeutic targets. Functional genomics research within both academia and industry has led to the identification of many more kinases as potential drug targets. Although a number of well-known formats are used for measuring protein kinase activity, some less well-characterized protein kinases identified through functional genomics present particular challenges for existing assay formats when there is limited knowledge of the endogenous substrates or activation mechanisms for these novel kinase targets. This is especially the case when a very sensitive assay is required to differentiate often highly potent inhibitors developed by late-stage medicinal chemistry programs. ACK1 is a non-receptor tyrosine kinase that has been shown to be involved in tumorigenesis and metastasis. Here we describe the development of an extremely sensitive high-throughput assay for ACK1 capable of detecting 240 fmol per well of the kinase reaction product employing a BV-tag-based electrochemiluminescence assay. This assay is universally applicable to protein tyrosine kinases using a BV-tag-labeled monoclonal antibody against phosphotyrosine. Furthermore, this assay can be extended to the evaluation of Ser/Thr kinases in those cases where an antibody recognizing the phospho-product is available.


Subject(s)
Luminescent Measurements/methods , Protein-Tyrosine Kinases/analysis , Antibodies, Monoclonal , Electrochemistry/methods , Kinetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Ruthenium Compounds/chemistry , Sensitivity and Specificity
6.
Structure ; 14(12): 1835-44, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17161373

ABSTRACT

Interleukin-1 (IL-1) receptor-associated kinase-4 (IRAK-4) is a serine/threonine kinase that plays an essential role in signal transduction by Toll/IL-1 receptors (TIRs). Here, we report the crystal structures of the phosphorylated human IRAK-4 kinase domain in complex with a potent inhibitor and with staurosporine to 2.0 and 2.2 A, respectively. The structures reveal that IRAK-4 has a unique tyrosine gatekeeper residue that interacts with the conserved glutamate from helix alphaC. Consequently, helix alphaC is "pulled in" to maintain the active orientation, and the usual pre-existing hydrophobic back pocket of the ATP-binding site is abolished. The peptide substrate-binding site is more open when compared with other protein kinases due to a marked movement of helix alphaG. The pattern of phosphate ligand interactions in the activation loop bears a close resemblance to that of a tyrosine kinase. Our results provide insights into IRAK-4 function and the design of selective inhibitors.


Subject(s)
Interleukin-1 Receptor-Associated Kinases/chemistry , Adenosine Triphosphate/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Glutamic Acid/chemistry , Humans , Interleukin-1 Receptor-Associated Kinases/metabolism , Molecular Sequence Data , Phosphates/chemistry , Protein Binding , Protein Conformation , Protein Structure, Secondary , Protein-Tyrosine Kinases/chemistry , Tyrosine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...