Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurol Res ; 34(10): 937-43, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23146297

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of unknown aetiology. Diagnosis is made through physical examination, electrophysiological findings, and by excluding other conditions. There is not a single biomarker that concludes the diagnosis. The aim of this study was to investigate differentially expressed proteins in cerebrospinal fluid (CSF) of ALS patients compared to control subjects, with the purpose to identify a panel of possible biomarkers for the disease. The differentially expressed spots/proteins were submitted to two-dimensional (2D) electrophoresis and recognized with matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. Parkin-like and many iron and zinc binding were some of the proteins found in ALS CSF. Parkin is a ligase involved in ubiquitin-proteasome pathway and mutations in the parkin gene are the most common cause of recessive familial Parkinson's disease. Iron and zinc are involved with many important metabolic processes and are related to neurodegenerative disease. Common features of ALS comprise failure of the ubiquitin-proteasome system and increased levels of metal ions in the brain. Therefore, the identification of these proteins can be a significant step in ALS research. These and other identified proteins are discussed in this study.


Subject(s)
Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Amyotrophic Lateral Sclerosis/genetics , Proteomics/methods , Adult , Aged , Amyotrophic Lateral Sclerosis/diagnosis , Female , Humans , Male , Middle Aged , Proteomics/trends , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/trends
2.
J Exp Zool ; 290(3): 227-33, 2001 Aug 01.
Article in English | MEDLINE | ID: mdl-11479902

ABSTRACT

Myosin light and heavy chains from skeletal and cardiac muscles and from the electric organ of Electrophorus electricus (L.) were characterised using biochemical and immunological methods, and compared with myosin extracted from avian, reptilian, and mammalian skeletal and cardiac muscles. The results indicate that the electric tissue has a myosin light chain 1 (LC1) and a muscle-specific myosin heavy chain. We also show that monoclonal antibody F109-12A8 (against LC1 and LC2) recognizes LC1 of myosin from human skeletal and cardiac muscles as well as those of rabbit, lizard, chick, and electric eel. However, only cardiac muscles from humans and rabbits have LC2, which is recognized by antibody F109-16F4. The data presented confirm the muscle origin of the electric tissue of E. electricus. This electric tissue has a profile of LC1 protein expression that resembles the myosin from cardiac muscle of the eel more than that from eel skeletal muscle. This work raises an interesting question about the ontogenesis and differentiation of the electric tissue of E. electricus.


Subject(s)
Electric Organ/physiology , Electrophorus/physiology , Myosin Heavy Chains/biosynthesis , Myosin Light Chains/biosynthesis , Animals , Antibodies, Monoclonal , Cell Differentiation , Electric Organ/chemistry , Heart/physiology , Humans , Muscle, Skeletal/physiology , Vertebrates/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...