Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
An Acad Bras Cienc ; 95(4): e20191256, 2023.
Article in English | MEDLINE | ID: mdl-38055604

ABSTRACT

The interest for oleaginous yeasts has grown significantly in the last three decades, mainly due to their potential use as a renewable source of microbial oil or single cell oils (SCOs). However, the methodologies for cell disruption to obtain the microbial oil are considered critical and determinant for a large-scale production. Therefore, this work aimed to evaluate different methods for cell wall disruption for the lipid extraction of Yarrowia lipolytica QU21 and Meyerozyma guilliermondii BI281A. The two strains were separately cultivated in 5 L batch fermenters for 120 hours, at 26 ºC and 400 rpm. Three different lipid extraction processes using Turrax homogenizer, Ultrasonicator and Braun homogenizer combined with bead milling were applied in wet, oven-dried, and freeze-dried biomass of both strains. The treatment with the highest percentage of disrupted cells and highest oil yield was the ultrasonication of oven-dried biomass (37-40% lipid content for both strains). The fact that our results point to one best extraction strategy for two different yeast strains, belonging to different species, is a great news towards the development of a unified technique that could be applied at industrial plants.


Subject(s)
Yarrowia , Oils , Biomass
2.
An Acad Bras Cienc ; 95(4): e20200483, 2023.
Article in English | MEDLINE | ID: mdl-37991101

ABSTRACT

The bioconversion of porungo cheese whey to produce ß-galactosidase in batch system was studied. The whey released after curd cutting and precipitation during porungo cheese production was collected in borosilicate flasks. Two strains of Kluyveromyces marxianus, CCT 4086 and CBS 6556, and whey supplementation with different nitrogen sources were evaluated. Different temperatures (30 °C and 37 °C) and pH values (5.0 to 7.0) were investigated to establish the best conditions for enzyme production. The highest enzymatic activity was obtained by K. marxianus CCT 4086 in porungo cheese whey supplemented with yeast extract (16.73 U mL-1). K. marxianus CCT 4086 produced superior ß-galactosidase activity when compared to CBS 6556 for all media tested (ranging from 11.69 to 14.40 U mL-1). Highest ß-galactosidase activity was reached under conditions of pH 7.0 and 30 °C using K. marxianus CCT 4086 in the better media composition. The lowest enzymatic activity was observed at 37 °C for all pH values tested (10.69 U mL-1 to 13.94 U mL-1) and a highest ß-galactosidase activity was reached in pH 7.0 for both two temperatures (11.42 to 15.93 U mL-1). Porungo cheese whey shows potential for industrial ß-galactosidase production by microbial fermentation.


Subject(s)
Cheese , Whey/chemistry , Whey/metabolism , Lactose/analysis , Fermentation , beta-Galactosidase
3.
An Acad Bras Cienc ; 92(3): e20191258, 2020.
Article in English | MEDLINE | ID: mdl-33206801

ABSTRACT

We investigated the changes in the physical structure of cellulose recovered from soybean and rice hulls treated with the ionic liquids 1-butyl-3-methylimidazolium chloride ([bmim][Cl]) and 1-butyl-3-methylimidazolium acetate ([bmim][Ac]). The characterization was carried out by a combination of thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Regenerated cellulose from soybean hull showed loss of crystallinity and high structural disruption caused by both ionic liquid treatments as compared to the untreated material. In contrast, rice hull presented only a small structural disruption when treated with [bmim][Ac] and was practically unaffected by [bmim][Cl], showing that this biomass residue is recalcitrance towards physico-chemical treatments, possibly as a consequence of its high composition content in silica. These results suggest the use of soybean hull as a substrate to be treated with ionic liquids in the preparation of lignocellulosic hydrolysates to be used in second-generation ethanol production, whereas other methods should be considered to treat rice hull biomass.


Subject(s)
Ionic Liquids , Oryza , Biomass , Glycine max , Sugars
4.
An Acad Bras Cienc ; 92(suppl 2): e20181030, 2020.
Article in English | MEDLINE | ID: mdl-33084752

ABSTRACT

The aims of this work were to improve cell tolerance towards high concentrations of furfural and 5-hydroxymethylfurfural (HMF) of an osmotolerant strain of Wickerhamomyces anomalus by means of evolutionary engineering, and to determine its ethanol production under stress conditions. Cells were grown in the presence of furfural, HMF, either isolated or in combination, and under high osmotic pressure conditions. The most toxic condition for the parental strain was the combination of both furans, under which it was unable to grow and to produce ethanol. However, the tolerant adapted strain achieved a yield of ethanol of 0.43 g g-1glucose in the presence of furfural and HMF, showing an alcohol dehydrogenase activity of 0.68 mU mg protein-1. For this strain, osmotic pressure, did not affect its growth rate. These results suggest that W. anomalus WA-HF5.5strain shows potential to be used in second-generation ethanol production systems.


Subject(s)
Furaldehyde , Saccharomycetales , Ethanol , Furaldehyde/analogs & derivatives , Osmotic Pressure
5.
Genome Announc ; 5(33)2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28818907

ABSTRACT

Here, we report the draft genome sequence of the yeast Spathaspora xylofermentans UFMG-HMD23.3 (=CBS 12681), a d-xylose-fermenting yeast isolated from the Amazonian forest. The genome consists of 298 contigs, with a total size of 15.1 Mb, including the mitochondrial genome, and 5,948 predicted genes.

6.
Article in English | MEDLINE | ID: mdl-21967246

ABSTRACT

In this research the production of hydrogen by Klebsiella pneumoniae BLb01 using residual glycerol discharged from a biodiesel fuel production plant was investigated. Klebsiella pneumoniae BLb01 was isolated from a bacteria-rich sludge of an upflow anaerobic sludge blanket reactor (UASB) of a soybean processing plant. A Plackett-Burman design (P-B) and Response Surface Methodology (RSM) were employed to determine the optimal condition for enhanced hydrogen production. The maximal hydrogen production, which was 45.0 mol % and with 98% of glycerol degradation, was achieved with the optimized medium with the following composition: 30 g L(-1) glycerol; 3 g L(-1) yeast ex tract 3 g L(-1) K(2)HPO(4); 1 g L(-1) KH(2)PO(4); temperature 39°C and pH 9.0. These results show the ability of this new strain of effectively converting residual glycerol into value-added energy products.


Subject(s)
Bioelectric Energy Sources , Biofuels/analysis , Bioreactors , Glycerol/metabolism , Hydrogen/metabolism , Klebsiella pneumoniae/metabolism , Glycerol/chemistry , Hydrogen-Ion Concentration , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...