Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Med (Lausanne) ; 11: 1401655, 2024.
Article in English | MEDLINE | ID: mdl-38882660

ABSTRACT

Purpose: The rapid changes in the coronavirus genomes created new strains after the first variation was found in Wuhan in 2019. SARS-CoV-2 genotypes should periodically undergo whole genome sequencing to control it because it has been extremely helpful in combating the virus. Many diagnoses, treatments, and vaccinations have been developed against it based on genome sequencing. With its practical implications, this study aimed to determine changes in the delta variant of SARS-CoV-2 widespread in Uzbekistan during the pandemic by genome sequencing, thereby providing crucial insights for developing effective control strategies that can be directly applied in the field. Design: We meticulously generated 17 high-quality whole-genome sequence data from 48 SARS-CoV-2 genotypes of COVID-19 patients who tested positive by PCR in Tashkent, Uzbekistan. Our rigorous approach, which includes stringent quality control measures and multiple rounds of verification, ensures the accuracy and reliability of our findings. Methods: Our study employed a unique combination of genome sequencing and bioinformatics web tools to analyze amino acid (AA) changes in the virus genomes. This approach allowed us to understand the genetic changes in the delta variant of SARS-CoV-2 widespread in Uzbekistan during the pandemic. Results: Our study revealed significant nucleotide polymorphisms, including non-synonymous (missense) and synonymous mutations in the coding regions of the sequenced sample genomes. These findings, categorized by phylogenetic analysis into the G clade (or GK sub-clade), contribute to our understanding of the delta variant of SARS-CoV-2 widespread in Uzbekistan during the pandemic. A total of 134 mutations were identified, consisting of 65 shared and 69 unique mutations. These nucleotide changes, including one frameshift mutation, one conservative and disruptive insertion-deletion, four upstream region mutations, four downstream region mutations, 39 synonymous mutations, and 84 missense mutations, are crucial in the ongoing battle against the virus. Conclusion: The comprehensive whole-genome sequencing data presented in this study aids in tracing the origins and sources of circulating SARS-CoV-2 variants and analyzing emerging variations within Uzbekistan and globally. The genome sequencing of SARS-CoV-2 from samples collected in Uzbekistan in late 2021, during the peak of the pandemic's second wave nationwide, is detailed here. Following acquiring these sequences, research efforts have focused on developing DNA and plant-based edible vaccines utilizing prevalent SARS-CoV-2 strains in Uzbekistan, which are currently undergoing clinical trials.

2.
Front Nutr ; 10: 1275307, 2023.
Article in English | MEDLINE | ID: mdl-38260078

ABSTRACT

Plant-based edible vaccines that provide two-layered protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outweigh the currently used parenteral types of vaccines, which predominantly cause a systemic immune response. Here, we engineered and selected a transgenic tomato genotype (TOMAVAC) that stably synthesized an antigenic S1 protein of SARS-CoV-2. Two-course spaced force-feeding of mice with ≈5.4 µg/ml TOMAVAC increased up to 16-fold the synthesis of RBD-specific NAbs in blood serum and the significant induction of S-IgA in intestinal lavage fluid. In a surrogate virus neutralization test, TOMAVAC-induced NAbs had 15-25% viral neutralizing activity. The results suggested early evidence of the immunogenicity and protectivity of TOMAVAC against the coronavirus disease 2019 (COVID-19) infection. Furthermore, we observed a positive trend of statistically significant 1.2-fold (average of +42.28 BAU/ml) weekly increase in NAbs in the volunteers' serum relative to the initial day. No severe side effects were observed, preliminarily supporting the safety of TOMAVAC. With the completion of future large-scale studies, higher-generation TOMAVAC should be a cost-effective, ecologically friendly, and widely applicable novel-generation COVID-19 vaccine, providing two-layered protection against SARS-CoV-2.

3.
Front Plant Sci ; 13: 906472, 2022.
Article in English | MEDLINE | ID: mdl-35677232

ABSTRACT

Marker-assisted selection (MAS) helps to shorten breeding time as well as reduce breeding resources and efforts. In our MAS program, we have targeted one of previously reported LD-blocks with its simple sequence repeat (SSR) marker(s), putatively associated with, at least, four different fibre quality QTLs such as fibre length, strength, micronaire and uniformity. In order to transfer targeted QTLs from a donor genotype to a cultivar of choice, we selected G. hirsutum donor genotypes L-141 and LN-1, possessing a fibre quality trait-associated LD-block from the chromosome 7/16. We crossed the donor lines with local elite G. hirsutum cultivars 'Andijan-35' and 'Mekhnat' as recipients. As a result, two segregating populations on LD-block of interest containing fibre QTLs were developed through backcrossing (BC) of F1 hybrids with their relative recipients (used as recurrent parents) up to five generations. In each BC and segregating BC1-5F1 populations, a transfer of targeted LD-block/QTLs was monitored using a highly polymorphic SSR marker, BNL1604 genotype. The homozygous cultivar genotypes with superior fibre quality and agronomic traits, bearing a targeted LD-block of interest, were individually selected from self-pollinated BC5F1 (BC5F2-5) population plants using the early-season PCR screening analysis of BNL1604 marker locus and the end-of-season fibre quality parameters. Only improved hybrids with superior fibre quality compared to original recipient parent were used for the next cycle of breeding. We successfully developed two novel MAS-derived cotton cultivars (named as 'Ravnaq-1' and 'Ravnaq-2') of BC5F5 generations. Both novel MAS cultivars possessed stronger and longer fibre as well as improved fibre uniformity and micronaire compared to the original recurrent parents, 'Andijan-35' and 'Mekhnat'. Our efforts demonstrated a precise transfer of the same LD-block with, at least, four superior fibre QTLs in the two independent MAS breeding experiments exploiting different parental genotypes. Results exemplify the feasibility of MAS in cotton breeding.

4.
PLoS One ; 17(3): e0266417, 2022.
Article in English | MEDLINE | ID: mdl-35358277

ABSTRACT

Due to rapid mutations in the coronavirus genome over time and re-emergence of multiple novel variants of concerns (VOC), there is a continuous need for a periodic genome sequencing of SARS-CoV-2 genotypes of particular region. This is for on-time development of diagnostics, monitoring and therapeutic tools against virus in the global pandemics condition. Toward this goal, we have generated 18 high-quality whole-genome sequence data from 32 SARS-CoV-2 genotypes of PCR-positive COVID-19 patients, sampled from the Tashkent region of Uzbekistan. The nucleotide polymorphisms in the sequenced sample genomes were determined, including nonsynonymous (missense) and synonymous mutations in coding regions of coronavirus genome. Phylogenetic analysis grouped fourteen whole genome sample sequences (1, 2, 4, 5, 8, 10-15, 17, 32) into the G clade (or GR sub-clade) and four whole genome sample sequences (3, 6, 25, 27) into the S clade. A total of 128 mutations were identified, consisting of 45 shared and 83 unique mutations. Collectively, nucleotide changes represented one unique frameshift mutation, four upstream region mutations, six downstream region mutations, 50 synonymous mutations, and 67 missense mutations. The sequence data, presented herein, is the first coronavirus genomic sequence data from the Republic of Uzbekistan, which should contribute to enrich the global coronavirus sequence database, helping in future comparative studies. More importantly, the sequenced genomic data of coronavirus genotypes of this study should be useful for comparisons, diagnostics, monitoring, and therapeutics of COVID-19 disease in local and regional levels.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral , Humans , Mutation , Nucleotides , Phylogeny , SARS-CoV-2/genetics , Uzbekistan/epidemiology
5.
Genomics ; 111(5): 1018-1025, 2019 09.
Article in English | MEDLINE | ID: mdl-30026106

ABSTRACT

Small RNAs (sRNAs) are short, non-coding, 17-24 nucleotides long RNA molecules that play vital roles in regulating gene expression in every known organism investigated to date including cotton (Gossypium ssp.). These tiny RNA molecules target diverse categories of genes from different bioliogical and metabolic processes and have been reported in the three domains of life. Small RNAs, including miRNAs, are involved in ovule and fiber development, biotic and abiotic stresses, fertility, and other biochemical processes in cotton species. Also, sRNAs are the critical components in RNA interference pathway. In this article, we have reviewed the research efforts related to the isolation and characterization of miRNAs using molecular and genomic approaches. The progress made in understanding the functional roles of miRNAs in regulation, alteration, and inactivation of fundamental plant processes and traits of importance in cotton are presented here.


Subject(s)
Crops, Agricultural/genetics , Gossypium/genetics , MicroRNAs/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gossypium/growth & development , MicroRNAs/metabolism , Plant Breeding/methods , Quantitative Trait, Heritable
6.
Front Plant Sci ; 7: 202, 2016.
Article in English | MEDLINE | ID: mdl-26941765

ABSTRACT

RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization.

SELECTION OF CITATIONS
SEARCH DETAIL
...