Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 116: 105279, 2021 11.
Article in English | MEDLINE | ID: mdl-34509799

ABSTRACT

Staphylococcus aureus is the one of the most successful modern pathogens. The same bacterium that lives as a skin and mucosal commensal can be transmitted in health-care and community-settings and causes severe infections. Thus, there is a great challenge for a discovery of novel anti-Staphylococcus aureus compounds, which should act against resistant strains. Herein, we designed and synthesized a series of 17 chalcones, substituted by amino group on ring A, which were evaluated against methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus MRSA planktonic cells. The antibacterial potency was improved by substituents on ring B, which were designed according to Topliss' manual method. 4-bromo-3'-aminochalcone (5f) was the most active, demonstrating minimum inhibitory concentration (MIC) values of 1.9 µg mL-1 and 7.8 µg mL-1 against MSSA and MRSA, respectively. The association of 5f with vancomycin demonstrated synergistic effect against MSSA and MRSA, with Fractional Inhibitory Concentration Index (FICI) values of 0.4 and 0.3, respectively. Subinhibitory concentration of 5f inhibited the MSSA and MRSA adhesion to human keratinocytes. Chalcone 5f was able to reduce MSSA and MRSA biofilm formation, as well as acts on preformed biofilm in concentration-dependent mode. Scanning electron microscopy analyses confirmed severe perturbations caused by 5f on MSSA and MRSA biofilm architecture. The acute toxicity assay, using Galleria mellonella larvae, indicated a low toxic effect of 5f after 72 h, displaying lethality of 20% and 30% at 7.8 µg mL-1 and 78.0 µg mL-1, respectively. In addition, the antibacterial activity spectrum of 5f indicated action against planktonic cells of Enterococcus faecalis (MIC = 7.8 µg mL-1), Acinetobacter baumannii (MIC = 15.6 µg mL-1) and Mycobacterium tuberculosis (MIC = 5.7 µg mL-1). Altogether, these results open new avenues for 5f as an anti-Staphylococcus aureus agent, with potential applications as antibacterial drug, adjunct of antibiotics and medical devices coating.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chalcones/pharmacology , Drug Design , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Chalcones/chemical synthesis , Chalcones/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
2.
Curr Top Med Chem ; 21(22): 1999-2017, 2021.
Article in English | MEDLINE | ID: mdl-34225623

ABSTRACT

BACKGROUND: Natural products have been universally approached in the research of novel trends useful to detail the essential paths of the life sciences and as a strategy for pharmacotherapeutics. OBJECTIVE: This work focuses on further modification to the 6-hydroxy-flavanone building block aiming to obtain improved BCR-ABL kinase inhibitors. METHODS: Ether derivatives were obtained from Williamson synthesis and triazole from Microwave- assisted click reaction. Chemical structures were finely characterized through IR, 1H and 13C NMR and HRMS. They were tested for their inhibitory activity against BCR-ABL kinase. RESULTS: Two inhibitors bearing a triazole ring as a pharmacophoric bridge demonstrated the strongest kinase inhibition at IC50 value of 364 nM (compound 3j) and 275 nM (compound 3k). CONCLUSION: 6-hydroxy-flavanone skeleton can be considered as a promising core for BCR-ABL kinase inhibitors.


Subject(s)
Flavonoids/chemical synthesis , Flavonoids/pharmacology , Fusion Proteins, bcr-abl/antagonists & inhibitors , Molecular Dynamics Simulation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology
3.
Bioorg Chem ; 109: 104668, 2021 04.
Article in English | MEDLINE | ID: mdl-33601139

ABSTRACT

Curcumin (CUR) is a symmetrical dicarbonyl compound with antibacterial activity. On the other hand, pharmacokinetic and chemical stability limitations hinder its therapeutic application. Monocarbonyl analogs of curcumin (MACs) have been shown to overcome these barriers. We synthesized and investigated the antibacterial activity of a series of unsymmetrical MACs derived from acetone against Mycobacterium tuberculosis and Gram-negative and Gram-positive species. Phenolic MACs 4, 6 and 8 showed a broad spectrum and potent activity, mainly against M. tuberculosis, Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus (MRSA), with MIC (minimum inhibitory concentration) values ranging from 0.9 to 15.6 µg/mL. The investigation regarding toxicity on human lung cells (MRC-5 and A549 lines) revealed MAC 4 was more selective than MACs 6 and 8, with SI (selectivity index) values ranging from 5.4 to 15.6. In addition, MAC 4 did not demonstrate genotoxic effects on A549 cells and it was more stable than CUR in phosphate buffer (pH 7.4) for 24 h at 37 °C. Fluorescence and phase contrast microscopies indicated that MAC 4 has the ability to disrupt the divisome of Bacillus subtilis without damaging its cytoplasmic membrane. However, biochemical investigations demonstrated that MAC 4 did not affect the GTPase activity of B. subtilis FtsZ, which is the main constituent of the bacterial divisome. These results corroborated that MAC 4 is a promising antitubercular and antibacterial agent.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Curcumin/analogs & derivatives , Curcumin/pharmacology , Bacillus subtilis/drug effects , Cell Line , Curcumin/chemistry , Drug Design , Drug Development , Humans , Lung/cytology , Molecular Structure
4.
Molecules ; 25(20)2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33050236

ABSTRACT

Xanthomonas citri subsp. citri (X. citri) is an important phytopathogen and causes Asiatic Citrus Canker (ACC). To control ACC, copper sprays are commonly used. As copper is an environmentally damaging heavy metal, new antimicrobials are needed to combat citrus canker. Here, we explored the antimicrobial activity of chalcones, specifically the methoxychalcone BC1 and the hydroxychalcone T9A, against X. citri and the model organism Bacillus subtilis. BC1 and T9A prevented growth of X. citri and B. subtilis in concentrations varying from 20 µg/mL to 40 µg/mL. BC1 and T9A decreased incorporation of radiolabeled precursors of DNA, RNA, protein, and peptidoglycan in X. citri and B. subtilis. Both compounds mildly affected respiratory activity in X. citri, but T9A strongly decreased respiratory activity in B. subtilis. In line with that finding, intracellular ATP decreased strongly in B. subtilis upon T9A treatment, whereas BC1 increased intracellular ATP. In X. citri, both compounds resulted in a decrease in intracellular ATP. Cell division seems not to be affected in X. citri, and, although in B. subtilis the formation of FtsZ-rings is affected, a FtsZ GTPase activity assay suggests that this is an indirect effect. The chalcones studied here represent a sustainable alternative to copper for the control of ACC, and further studies are ongoing to elucidate their precise modes of action.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chalcones/pharmacology , Plant Diseases/microbiology , Xanthomonas/pathogenicity , Anti-Bacterial Agents/chemistry , Bacillus subtilis/drug effects , Bacillus subtilis/pathogenicity , Chalcones/chemistry
5.
Future Microbiol ; 15: 21-33, 2020 01.
Article in English | MEDLINE | ID: mdl-32043361

ABSTRACT

Aim: This study aimed to evaluate the activity of 2'-hydroxychalcone-loaded in nanoemulsion (NLS + 2'chalc), the cytotoxic effect and toxicity against Paracoccidioides brasiliensis and Paracoccidioides lutzii using a zebrafish model. Materials & methods: Preparation and physical-chemical characterization of nanoemulsion (NLS) and NLS + 2'chalc were performed. MIC and minimum fungicide concentration, cytotoxicity and toxicity were also evaluated in the Danio rerio model. Results: NLS + 2'chalc showed fungicidal activity against Paracoccidioides spp. without cytotoxicity in MRC5 and HepG2 lines. It also had high selectivity index values and no toxicity in the zebrafish model based on MIC values. Conclusion: NLS + 2'chalc is a potential new alternative treatment for paracoccidioidomycosis.


Subject(s)
Antifungal Agents/pharmacology , Chalcones/pharmacology , Paracoccidioides/drug effects , Animals , Cell Line , Chalcones/chemistry , Emulsions/pharmacology , Fibroblasts/drug effects , Hep G2 Cells , Humans , Microbial Sensitivity Tests , Models, Animal , Nanoparticles , Paracoccidioidomycosis/microbiology , Zebrafish
6.
Microbiologyopen ; 8(4): e00683, 2019 04.
Article in English | MEDLINE | ID: mdl-30051597

ABSTRACT

Curcumin is the main constituent of turmeric, a seasoning popularized around the world with Indian cuisine. Among the benefits attributed to curcumin are anti-inflammatory, antimicrobial, antitumoral, and chemopreventive effects. Besides, curcumin inhibits the growth of the gram-positive bacterium Bacillus subtilis. The anti-B. subtilis action happens by interference with the division protein FtsZ, an ancestral tubulin widespread in Bacteria. FtsZ forms protofilaments in a GTP-dependent manner, with the concomitant recruitment of essential factors to operate cell division. By stimulating the GTPase activity of FtsZ, curcumin destabilizes its function. Recently, curcumin was shown to promote membrane permeabilization in B. subtilis. Here, we used molecular simplification to dissect the functionalities of curcumin. A simplified form, in which a monocarbonyl group substituted the ß-diketone moiety, showed antibacterial action against gram-positive and gram-negative bacteria of clinical interest. The simplified curcumin also disrupted the divisional septum of B. subtilis; however, subsequent biochemical analysis did not support a direct action on FtsZ. Our results suggest that the simplified curcumin exerted its function mainly through membrane permeabilization, with disruption of the membrane potential necessary for FtsZ intra-cellular localization. Finally, we show here experimental evidence for the requirement of the ß-diketone group of curcumin for its interaction with FtsZ.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Cell Membrane/drug effects , Curcumin/pharmacology , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Microbial Sensitivity Tests
7.
Fitoterapia ; 124: 137-144, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29132837

ABSTRACT

Chrysin is a plant-derived polyphenol that has the potential to increase endogenous testosterone levels both by inhibiting the aromatase enzyme and by stimulating testicular steroidogenesis. The effects of chrysin on the prostate are unknown, especially during its development and functional maturation. Thus, the aim of this study was to evaluate the effects of chrysin prepubertal exposure on the male and female prostates of both pubertal and adult gerbils. To evaluate the possible androgenic responses of chrysin, gerbils were also exposed to testosterone. Male and female gerbils were exposed to chrysin or to testosterone cypionate from postnatal day 15 to 42. Male and female gerbils were euthanized at either 43days or 90days age. The prostates were collected for biometrical, morphological and immunohistochemical analysis. The results showed that prepubertal exposure to chrysin had differential effects on the prostate of both pubertal and adult animals. The prostates of male and female pubertal gerbils showed no histological alterations, although there was increased frequency of androgen receptor (AR) in males and females, and estrogen receptor alpha (ERα) in females. Adult males and females presented developed prostate glands, with higher cell proliferative rate. In addition, AR and ERα frequency remained high in the prostate of adult animals. These results demonstrated that prepubertal exposure to chrysin disrupts steroid receptors regulation in the prostate, potentiating the response of this gland to the biological effects of endogenous steroids. In this context, excessive consumption of phytoestrogens during the critical stages of development should be considered with caution.


Subject(s)
Estrogen Receptor alpha/metabolism , Flavonoids/pharmacology , Prostate/drug effects , Receptors, Androgen/metabolism , Animals , Female , Gerbillinae , Male , Prostate/metabolism , Sexual Maturation , Testosterone/analogs & derivatives , Testosterone/pharmacology , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...