Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1224583, 2023.
Article in English | MEDLINE | ID: mdl-37636081

ABSTRACT

Phosphorus (P) availability in soil is paradoxical, with a significant portion of applied P accumulating in the soil, potentially affecting plant production. The impact of biochar (BR) and fishpond sediments (FPS) as fertilizers on P fixation remains unclear. This study aimed to determine the optimal ratio of BR, modified biochar (MBR), and FPS as fertilizer replacements. A pot experiment with maize evaluated the transformation of P into inorganic (Pi) and organic (Po) fractions and their contribution to P uptake. Different percentages of FPS, BR, and MBR were applied as treatments (T1-T7), T1 [(0.0)], T2 [FPS (25.0%)], T3 [FPS (25.0%) + BR (1%)], T [FPS (25%) +MBR (3%)], T5 [FPS (35%)], T6 [FPS (35%) +BR (1%)], and T7 [FPS (35%) + MBR (1%)]. Using the modified Hedley method and the Tiessen and Moir fractionation scheme, P fractions were determined. Results showed that various rates of MBR, BR, and FPS significantly increased labile and moderately labile P fractions (NaHCO3-Pi, NaHCO3-Po, HClD-Pi, and HClC-Pi) and residual P fractions compared with the control (T1). Positive correlations were observed between P uptake, phosphatase enzyme activity, and NaHCO3-Pi. Maximum P uptake and phosphatase activity were observed in T6 and T7 treatments. The addition of BR, MBR, and FPS increased Po fractions. Unlike the decline in NaOH-Po fraction, NaHCO3-Po and HClc-Po fractions increased. All Pi fractions, particularly apatite (HClD-Pi), increased across the T1-T7 treatments. HClD-Pi was the largest contributor to total P (40.7%) and can convert into accessible P over time. The T5 treatment showed a 0.88% rise in residual P. HClD-Pi and residual P fractions positively correlated with P uptake, phosphatase activity, NaOH-Pi, and NaOH-Po moderately available fractions. Regression analysis revealed that higher concentrations of metals such as Ca, Zn, and Cr significantly decreased labile organic and inorganic P fractions (NaHCO3-Pi, R 2 = 0.13, 0.36, 0.09) and their availability (NaHCO3-Po, R 2 = 0.01, 0.03, 0.25). Excessive solo BR amendments did not consistently increase P availability, but optimal simple and MBR increased residual P contents in moderately labile and labile forms (including NaOH-Pi, NaHCO3-Pi, and HClD-Pi). Overall, our findings suggest that the co-addition of BR and FPS can enhance soil P availability via increasing the activity of phosphatase enzyme, thereby enhancing plant P uptake and use efficiency, which eventually maintains the provision of ecosystem functions and services.

2.
Int J Mol Sci ; 23(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35055162

ABSTRACT

Adventitious root (AR) formation is a bottleneck for the mass propagation of apple rootstocks, and water stress severely restricts it. Different hormones and sugar signaling pathways in apple clones determine AR formation under water stress, but these are not entirely understood. To identify them, GL-3 stem cuttings were cultured on polyethylene glycol (PEG) treatment. The AR formation was dramatically decreased compared with the PEG-free control (CK) cuttings by increasing the endogenous contents of abscisic acid (ABA), zeatin riboside (ZR), and methyl jasmonate (JA-me) and reducing the indole-3-acetic acid (IAA) and gibberellic acid 3 (GA3) contents. We performed a transcriptomic analysis to identify the responses behind the phenotype. A total of 3204 differentially expressed genes (DEGs) were identified between CK and PEG, with 1702 upregulated and 1502 downregulated genes. Investigation revealed that approximately 312 DEGs were strongly enriched in hormone signaling, sugar metabolism, root development, and cell cycle-related pathways. Thus, they were selected for their possible involvement in adventitious rooting. However, the higher accumulation of ABA, ZR, and JA-me contents and the upregulation of their related genes, as well as the downregulation of sugar metabolism-related genes, lead to the inhibition of ARs. These results indicate that AR formation is a complicated biological process chiefly influenced by multiple hormonal signaling pathways and sugar metabolism. This is the first study to demonstrate how PEG inhibits AR formation in apple plants.


Subject(s)
Gene Expression Profiling/methods , Malus/growth & development , Plant Proteins/genetics , Abscisic Acid/metabolism , Acetates/metabolism , Cyclopentanes/metabolism , Dehydration , Gene Expression Regulation, Plant , Gibberellins/metabolism , Indoleacetic Acids/metabolism , Isopentenyladenosine/analogs & derivatives , Isopentenyladenosine/metabolism , Malus/genetics , Malus/metabolism , Oxylipins/metabolism , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Polyethylene Glycols/pharmacology , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...