Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38289236

ABSTRACT

Artificial light harvesting, a process that involves converting sunlight into chemical potential energy, is considered to be a promising part of the overall solution to address urgent global energy challenges. Conjugated polyelectrolyte complexes (CPECs) are particularly attractive for this purpose due to their extended electronic states, tunable assembly thermodynamics, and sensitivity to their local environment. Importantly, ionically assembled complexes of conjugated polyelectrolytes can act as efficient donor-acceptor pairs for electronic energy transfer (EET). However, to be of use in material applications, we must understand how modifying the chemical structure of the CPE backbone alters the EET rate beyond spectral overlap considerations. In this report we investigate the dependence of the EET efficiency and rate on the electronic structure and excitonic wave function of the CPE backbone. To do so, we synthesized a series of alternating copolymers where the electronic states are systematically altered by introducing comonomers with electron withdrawing and electron-rich character while keeping the linear ionic charge density nearly fixed. We find evidence that the excitonic coupling may be significantly affected by the exciton delocalization radius, in accordance with analytical models based on the line-dipole approximation and quantum chemistry calculations. Our results imply that care should be taken when selecting CPE components for optimal CPEC EET. These results have implications for using CPECs as key components in water-based light-harvesting materials, either as standalone assemblies or as adsorbates on nanoparticles and thin films.

2.
J Phys Chem B ; 127(10): 2277-2285, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36882905

ABSTRACT

The ability to form robust, optoelectronically responsive, and mechanically tunable hydrogels using facile processing is desirable for sensing, biomedical, and light-harvesting applications. We demonstrate that such a hydrogel can be formed using aqueous complexation between one conjugated and one nonconjugated polyelectrolyte. We show that the rheological properties of the hydrogel can be tuned using the regioregularity of the conjugated polyelectrolyte (CPE) backbone, leading to significantly different mesoscale gel morphologies. We also find that the exciton dynamics in the long-time limit reflect differences in the underlying electronic connectivity of the hydrogels as a function CPE regioregularity. The influence of excess small ions on the hydrogel structure and the exciton dynamics similarly depends on the regioregularity in a significant way. Finally, electrical impedance measurements lead us to infer that these hydrogels can act as mixed ionic/electronic conductors. We believe that such gels possess an attractive combination of physical-chemical properties that can be leveraged in multiple applications.

3.
Macromolecules ; 55(23): 10302-10311, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36530525

ABSTRACT

Conjugated polyelectrolytes (CPEs) have the potential to serve as building blocks of artificial light-harvesting systems. This is primarily due to their delocalized electronic states and potential for hierarchical self-assembly. We showed previously that inter-CPE complexes composed of oppositely charged exciton-donor and exciton-acceptor CPEs displayed efficient electronic energy transfer. However, near ionic charge equivalence, complexed CPE chains become net-neutral and thus experience a precipitous drop in aqueous solubility. To increase the stability and to rationally manipulate the phase behavior of inter-CPE complexes, we synthesized a series of highly water-soluble exciton-donor CPEs composed of alternating ionic and polar nonionic fluorene monomers. The nonionic monomer contained oligo(ethyleneglycol) sidechains of variable length. We then formed exciton donor-acceptor complexes and investigated their relative energy transfer efficiencies in the presence of a fixed exciton-acceptor CPE. We find that, even when the polar nonionic sidechains become quite long (nine ethyleneglycol units), the energy transfer efficiency is hardly affected so long as the inter-CPE network retains a net polyelectrolyte charge. However, near the onset of spontaneous phase separation, we observe a clear influence of the length of the oligo(ethyleneglycol) sidechains on the photophysics of the complex. Our results have implications for the use of polyelectrolyte phase separation to produce aqueous light-harvesting soft materials.

4.
J Phys Chem Lett ; 13(44): 10275-10281, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36305559

ABSTRACT

Viscoelastic liquid coacervate phases that are highly enriched in nonconjugated polyelectrolytes are currently the subject of highly active research from biological and soft-materials perspectives. However, formation of a liquid, electronically active coacervate has proved highly elusive, since extended π-electron interactions strongly favor the solid state. Herein we show that a conjugated polyelectrolyte can be rationally designed to undergo aqueous liquid/liquid phase separation to form a liquid coacervate phase. This result is significant both because it adds to the fundamental understanding of liquid/liquid phase separation but also because it opens intriguing applications in light harvesting and beyond. We find that the semiconducting coacervate is intrinsically excitonically coupled, allowing for long-range exciton diffusion in a strongly correlated, fluctuating environment. The emergent excitonic states are comprised of both excimers and H-aggregates.


Subject(s)
Water , Hydrogen-Ion Concentration , Polyelectrolytes , Diffusion
5.
Angew Chem Int Ed Engl ; 61(20): e202117759, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35229429

ABSTRACT

The ability to assemble artificial systems that mimic aspects of natural light-harvesting functions is fascinating and attractive for materials design. Given the complexity of such a system, a simple design pathway is desirable. Here, we argue that associative phase separation of oppositely charged conjugated polyelectrolytes (CPEs) can provide such a path in an environmentally benign medium: water. We find that complexation between an exciton-donor and acceptor CPE leads to formation of a complex fluid. We interrogate exciton transfer from the donor to the acceptor CPE within the complex fluid and find that transfer is highly efficient. We also find that excess molecular ions can tune the modulus of the inter-CPE complex fluid. Even at high ion concentrations, CPEs remain complexed with significantly delocalized electronic wavefunctions. Our work lays the rational foundation for complex, tunable aqueous light-harvesting systems via the intrinsic thermodynamics of associative phase separation.


Subject(s)
Electronics , Water , Polyelectrolytes , Thermodynamics
6.
ACS Appl Mater Interfaces ; 13(43): 51436-51446, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34677936

ABSTRACT

The mechanical properties of π-conjugated (semiconducting) polymers are a key determinant of the stability and manufacturability of devices envisioned for applications in energy and healthcare. These properties─including modulus, extensibility, toughness, and strength─are influenced by the morphology of the solid film, which depends on the method of processing. To date, the majority of work done on the mechanical properties of semiconducting polymers has been performed on films deposited by spin coating, a process not amenable to the manufacturing of large-area films. Here, we compare the mechanical properties of thin films of regioregular poly(3-heptylthiophene) (P3HpT) produced by three scalable deposition processes─interfacial spreading, solution shearing, and spray coating─and spin coating (as a reference). Our results lead to four principal conclusions. (1) Spray-coated films have poor mechanical robustness due to defects and inhomogeneous thickness. (2) Sheared films show the highest modulus, strength, and toughness, likely resulting from a decrease in free volume. (3) Interfacially spread films show a lower modulus but greater fracture strain than spin-coated films. (4) The trends observed in the tensile behavior of films cast using different deposition processes held true for both P3HpT and poly(3-butylthiophene) (P3BT), an analogue with a higher glass transition temperature. Grazing incidence X-ray diffraction and ultraviolet-visible spectroscopy reveal many notable differences in the solid structures of P3HpT films generated by all four processes. While these morphological differences provide possible explanations for differences in the electronic properties (hole mobility), we find that the mechanical properties of the film are dominated by the free volume and surface topography. In field-effect transistors, spread films had mobilities more than 1 magnitude greater than any other films, likely due to a relatively high proportion of edge-on texturing and long coherence length in the crystalline domains. Overall, spread films offer the best combination of deformability and charge-transport properties.

7.
Nanoscale Adv ; 2(3): 1074-1083, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-36133054

ABSTRACT

Design and engineering of graphene-based functional nanomaterials for effective antimicrobial applications has been attracting extensive interest. In the present study, graphene oxide quantum dots (GOQDs) were prepared by chemical exfoliation of carbon fibers and exhibited apparent antimicrobial activity. Transmission electron microscopic measurements showed that the lateral length ranged from a few tens to a few hundred nanometers. Upon reduction by sodium borohydride, whereas the UV-vis absorption profile remained largely unchanged, steady-state photoluminescence measurements exhibited a marked blue-shift and increase in intensity of the emission, due to (partial) removal of phenanthroline-like structural defects within the carbon skeletons. Consistent results were obtained in Raman and time-resolved photoluminescence measurements. Interestingly, the samples exhibited apparent, but clearly different, antimicrobial activity against Staphylococcus epidermidis cells. In the dark and under photoirradiation (400 nm), the as-produced GOQDs exhibited markedly higher cytotoxicity than the chemically reduced counterparts, likely because of (i) effective removal by NaBH4 reduction of redox-active phenanthroline-like moieties that interacted with the electron-transport chain of the bacterial cells, and (ii) diminished production of hydroxyl radicals that were potent bactericidal agents after chemical reduction as a result of increased conjugation within the carbon skeletons.

8.
Phys Chem Chem Phys ; 22(3): 1400-1408, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31859332

ABSTRACT

Electron transfer is key to the operation of devices based on molecular (organic) semiconductors. Others have shown that electron transfer in the solid state often proceeds on sub-50 fs timescales, the details of which can be difficult to temporally resolve using pump-probe spectroscopy. A popular technique to measure average time scales for such rapid electron-transfer events is the core-hole clock implementation of resonant Auger electron spectroscopy at a single X-ray absorption edge. This is often done on relatively small molecules with core-excited states that are highly localized. We have used resonant Auger spectroscopy to probe sub-50 fs electron dynamics of two relatively large model organic semiconductors: Cu phthalocyanine (CuPc) along with its fluorinated analog, F16CuPc. We have interrogated electron dynamics simultaneously at N and C K-edges, along with calculations of initial and final states participating in the core-excited states. Our measurements show that the electron dynamics differ substantially across the two absorption edges for a given molecule, and that there are significant differences at a given edge between the two derivatives. X-ray spectroscopy calculations suggest that the extension of π-electron density onto peripheral F atoms in F16CuPc is implicated in the large change in ultrafast electron dynamics upon fluorination. We believe our results have important implications for analysis of core-hole clock measurements on relatively large organic semiconductors.

9.
J Phys Chem Lett ; 10(15): 4409-4416, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31311264

ABSTRACT

We report the first demonstration of using trivalent metal hydrated nitrate coordination complexes (TMHNCCs) as novel passivation ligands to control the synthesis of magic sized clusters (MSCs) and quantum dots (QDs) of CsPbBr3 perovskite at room temperature. We can easily tune from QDs to MSCs or produce a mixture of the two by changing the amount of TMHNCC ligands used, with more ligands favoring MSCs. The original TMHNCC introduced, aluminum nitrate nonahydrate [ANN, Al(NO3)3·9H2O], led to the production of aluminum dihydroxide nitrate tetrahydrate {ADNT, [Al(OH)2(NO3)]·4H2O}, with the assistance of oleic acid (OA) and oleylamine (OAm). Through several control experiments, we determined that ADNT is the primary ligand for effectively passivating the MSCs and QDs, with OAm being essential for deprotonating ANN and OA for adjusting the pH of the reaction system. We suggest that ADNT is planar on the surface of the MSCs or QDs with its NO3- and OH- groups binding to the Cs+ and Pb2+ defect sites and Al3+ binding to the Br- defect sites of the MSCs or QDs.

10.
Science ; 362(6419): 1131-1134, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30523104

ABSTRACT

Although high-temperature operation (i.e., beyond 150°C) is of great interest for many electronics applications, achieving stable carrier mobilities for organic semiconductors at elevated temperatures is fundamentally challenging. We report a general strategy to make thermally stable high-temperature semiconducting polymer blends, composed of interpenetrating semicrystalline conjugated polymers and high glass-transition temperature insulating matrices. When properly engineered, such polymer blends display a temperature-insensitive charge transport behavior with hole mobility exceeding 2.0 cm2/V·s across a wide temperature range from room temperature up to 220°C in thin-film transistors.

11.
Phys Chem Chem Phys ; 20(38): 25085-25095, 2018 Oct 03.
Article in English | MEDLINE | ID: mdl-30250947

ABSTRACT

Electron delocalization in conjugated organic molecules is a rate-limiting step in maximizing the charge generation efficiency of next generation photovoltaics and molecular electronics. In particular, ultrafast (<50 fs) delocalization is an important aspect that has been beyond the scope of traditional optical experiments. In this work, we use resonant photoemission spectroscopy to probe electron delocalization timescales as a function of conjugation length by examining an oligothiophene chemical series containing 4-, 5- and 6-mers. We find that above a certain photon energy threshold, the 5-mer, quinquenthiophene, displays the largest ultrafast tunneling rates, roughly three times faster than the 6-mer, sexithiophene. We argue that differences in thin-film molecular packing cannot satisfactorily explain our results, and we speculate that the differences in ultrafast electron dynamics may be a manifestation of the odd/even effect.

12.
Adv Mater ; 29(6)2017 Feb.
Article in English | MEDLINE | ID: mdl-27918118

ABSTRACT

Melt-processing of complementary semiconducting polymer blends provides an average charge carrier mobility of 0.4 cm2 V-1 s-1 and current on/off ratios higher than 105 , a record performance for melt-processed organic field-effect transistors.

13.
J Phys Chem B ; 120(31): 7767-74, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27428604

ABSTRACT

Photosynthetic organisms have mastered the use of "soft" macromolecular assemblies for light absorption and concentration of electronic excitation energy. Nature's design centers on an optically inactive protein-based backbone that acts as a host matrix for an array of light-harvesting pigment molecules. The pigments are organized in space such that excited states can migrate between molecules, ultimately delivering the energy to the reaction center. Here we report our investigation of an artificial light-harvesting energy transfer antenna based on complexes of oppositely charged conjugated polyelectrolytes (CPEs). The conjugated backbone and the charged side chains of the CPE lead to an architecture that simultaneously functions as a structural scaffold and an electronic energy "highway". We find that the process of ionic complex formation leads to a remarkable change in the excitonic wavefunction of the energy acceptor, which manifests in a dramatic increase in the fluorescence quantum yield. We argue that the extended backbone of the donor CPE effectively templates a planarized acceptor polymer, leading to excited states that are highly delocalized along the polymer backbone.

14.
Chem Commun (Camb) ; 51(73): 13894-7, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26234770

ABSTRACT

In this work, we synthesize large-area thin films of a conjugated, imine-based, two-dimensional covalent organic framework at the solution/air interface. Thicknesses between ∼2-200 nm are achieved. Films can be transferred to any desired substrate by lifting from underneath, enabling their use as the semiconducting active layer in field-effect transistors.

15.
J Phys Chem Lett ; 6(1): 6-12, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-26263084

ABSTRACT

Much is known about the rate of photoexcited charge generation in at organic donor/acceptor (D/A) heterojunctions overaged over all relative arrangements. However, there has been very little experimental work investigating how the photoexcited electron transfer (ET) rate depends on the precise relative molecular orientation between D and A in thin solid films. This is the question that we address in this work. We find that the ET rate depends strongly on the relative molecular arrangement: The interface where the model donor compound copper phthalocyanine is oriented face-on with respect to the fullerene C60 acceptor yields a rate that is approximately 4 times faster than that of the edge-on oriented interface. Our results suggest that the D/A electronic coupling is significantly enhanced in the face-on case, which agrees well with theoretical predictions, underscoring the importance of controlling the relative interfacial molecular orientation.

16.
ACS Appl Mater Interfaces ; 7(51): 28035-41, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26292836

ABSTRACT

Conjugated polymers are widely used materials in organic photovoltaic devices. Owing to their extended electronic wave functions, they often form semicrystalline thin films. In this work, we aim to understand whether distribution of crystallographic orientations affects exciton diffusion using a low-band-gap polymer backbone motif that is representative of the donor/acceptor copolymer class. Using the fact that the polymer side chain can tune the dominant crystallographic orientation in the thin film, we have measured the quenching of polymer photoluminescence, and thus the extent of exciton dissociation, as a function of crystal orientation with respect to a quenching substrate. We find that the crystallite orientation distribution has little effect on the average exciton diffusion length. We suggest several possibilities for the lack of correlation between crystallographic texture and exciton transport in semicrystalline conjugated polymer films.

17.
Adv Mater ; 27(4): 759-65, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25607919

ABSTRACT

A highly sensitive single-walled carbon nanotube/C60 -based infrared photo-transistor is fabricated with a responsivity of 97.5 A W(-1) and detectivity of 1.17 × 10(9) Jones at 1 kHz under a source/drain bias of -0.5 V. The much improved performance is enabled by this unique device architecture that enables a high photoconductive gain of ≈10(4) with a response time of several milliseconds.

18.
Nat Commun ; 5: 3005, 2014.
Article in English | MEDLINE | ID: mdl-24398476

ABSTRACT

Organic semiconductors with higher carrier mobility and better transparency have been actively pursued for numerous applications, such as flat-panel display backplane and sensor arrays. The carrier mobility is an important figure of merit and is sensitively influenced by the crystallinity and the molecular arrangement in a crystal lattice. Here we describe the growth of a highly aligned meta-stable structure of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) from a blended solution of C8-BTBT and polystyrene by using a novel off-centre spin-coating method. Combined with a vertical phase separation of the blend, the highly aligned, meta-stable C8-BTBT films provide a significantly increased thin film transistor hole mobility up to 43 cm(2) Vs(-1) (25 cm(2) Vs(-1) on average), which is the highest value reported to date for all organic molecules. The resulting transistors show high transparency of >90% over the visible spectrum, indicating their potential for transparent, high-performance organic electronics.

19.
ACS Appl Mater Interfaces ; 5(17): 8505-15, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23905883

ABSTRACT

To achieve organic solar cells with a broadened spectral absorption, we aim to promote the growth of the near-infrared (NIR)-active polymorph of lead phthalocyanine (PbPc) on a relevant electrode for solar cell applications. We studied the effect of different substrate modification layers on PbPc thin film structure as a function of thickness and deposition rate (rdep). We characterized crystallinity and orientation by grazing incidence X-ray diffraction (GIXD) and in situ X-ray reflectivity (XRR) and correlated these data to the performance of bilayer solar cells. When deposited onto a self-assembled monolayer (SAM) or a molybdenum oxide (MoO3) buffer layer, the crystallinity of the PbPc films improves with thickness. The transition from a partially crystalline layer close to the substrate to a more crystalline film with a higher content of the NIR-active phase is enhanced at low rdep, thereby leading to solar cells that exhibit a higher maximum in short circuit current density (JSC) for thinner donor layers. The insertion of a CuI layer induces the formation of strongly textured, crystalline PbPc layers with a vertically homogeneous structure. Solar cells based on these templated donor layers show a variation of JSC with thickness that is independent of rdep. Consequently, without decreasing rdep we could achieve JSC=10 mA/cm2, yielding a bilayer solar cell with a peak external quantum efficiency (EQE) of 35% at 900 nm, and an overall power conversion efficiency (PCE) of 2.9%.


Subject(s)
Infrared Rays , Organometallic Compounds/chemistry , Solar Energy , Crystallization , Molybdenum/chemistry , Oxides/chemistry
20.
ACS Nano ; 7(2): 962-77, 2013 Feb 26.
Article in English | MEDLINE | ID: mdl-23346927

ABSTRACT

In an effort to favor the formation of straight polymer chains without crystalline grain boundaries, we have synthesized an amphiphilic conjugated polyelectrolyte, poly(fluorene-alt-thiophene) (PFT), which self-assembles in aqueous solutions to form cylindrical micelles. In contrast to many diblock copolymer assemblies, the semiconducting backbone runs parallel, not perpendicular, to the long axis of the cylindrical micelle. Solution-phase micelle formation is observed by X-ray and visible light scattering. The micelles can be cast as thin films, and the cylindrical morphology is preserved in the solid state. The effects of self-assembly are also observed through spectral shifts in optical absorption and photoluminescence. Solutions of higher-molecular-weight PFT micelles form gel networks at sufficiently high aqueous concentrations. Rheological characterization of the PFT gels reveals solid-like behavior and strain hardening below the yield point, properties similar to those found in entangled gels formed from surfactant-based micelles. Finally, electrical measurements on diode test structures indicate that, despite a complete lack of crystallinity in these self-assembled polymers, they effectively conduct electricity.


Subject(s)
Electric Conductivity , Fluorenes/chemistry , Polymers/chemistry , Semiconductors , Thiophenes/chemistry , Gels , Hydrophobic and Hydrophilic Interactions , Micelles , Models, Molecular , Molecular Conformation , Optical Phenomena , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...