Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Hazard Mater ; 370: 164-171, 2019 05 15.
Article in English | MEDLINE | ID: mdl-29910037

ABSTRACT

In this study, the photolytic and photocatalytic removal of the herbicide paraquat is investigated under UV-C (254 nm). For photocatalytic experiments, SiC foams were used with P25-TiO2 nanoparticles deposited by dip-coating. The foams were characterized by scanning electron microscopy and paraquat's degradation under UV-C photolysis or photocatalysis, followed by UV-vis spectroscopy, total organic carbon analyzer, LC-MS and ion chromatography. After 3 h of reactions by photolysis and photocatalysis, 4% and 91% of TOC removal were observed. An analysis of degradation by-products showed a similar degradation pathway with pyridinium ions observed by LC/MS and carboxylic acids (succinate, acetate, oxalate and formate) detected by ion chromatography. In conclusion, these two different photo-degradation processes are able to remove paraquat and produce similar by-products. However, the kinetics of degradation is rather slow during photolysis and it is recommended to combine the UV-C lightning with a TiO2 photocatalyst to improve the mineralization rate.

2.
Chemosphere ; 193: 160-169, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29131974

ABSTRACT

In this work, the combination of membrane bioreactor (MBR) and electro-oxidation (EO) process was studied for the treatment of a synthetic hospital wastewater fortified with four pharmaceutical pollutants namely carbamazepine (CBZ), ibuprofen (IBU), estradiol (E-E) at a concentration of 10 µg L-1 venlafaxine (VEN) at 0.2 µg L-1. Two treatment configurations were studied: EO process as pre-treatment and post-treatment. Wastewater treatment with MBR alone shows high removal percentages of IBU and E-E (∼90%). Unlikely for CBZ and VEN, a low elimination percentage (∼10%) was observed. The hydraulic and the solid retention times (HRT and SRT) were 18 h and 140 d respectively, while the biomass concentration in the MBR was 16.5 g L-1. To enhance pharmaceuticals elimination, an EO pretreatment was conducted during 40 min at 2 A. This configuration allowed a 92% removal for VEN, which was far greater than both treatments alone, with lower than 30% and 50% for MBR and EO, respectively. The MBR-EO coupling (EO as post-treatment) allows high removal percentages (∼97%) of the four pharmaceutical pollutants after 40 min of treatment at a current intensity of 0.5 A with Nb/BDD as electrodes. This configuration appears to be very effective compared to the first configuration (EO-MBR) where EO process is used as a pre-treatment. Toxicity assessment showed that the treated effluent of this configuration is not toxic to Daphnia magna except at 100% v/v. The MBR-EO coupling appears to be a promising treatment for contaminated hospital effluents.


Subject(s)
Bioreactors , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Biomass , Carbamazepine , Hospitals , Kinetics , Medical Waste Disposal , Membranes, Artificial , Oxidation-Reduction , Water Pollutants, Chemical/toxicity
3.
J Hazard Mater ; 338: 381-393, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28586753

ABSTRACT

Considerable interest has been given to using nanofiltration (NF) in lieu of reverse osmosis for water reclamation schemes due to lower energy consumption, higher flux rates while ensuring good micropollutants rejection. The application NF results in the generation of a large concentrated waste stream. Treatment of the concentrate is a major hurdle for the implementation of membrane technologies since the concentrate is usually unusable due to a large pollutants content. This work focuses on the application of ozonation as pretreatment of urban NF concentrates, the generation of transformation products and their relative toxicity. Three pharmaceutical micropollutants largely encountered in water cycle were selected as target molecules: acetaminophen, carbamazepine and atenolol. Through accurate-mass Q-TOF LC-MS/MS analyses, more than twenty ozonation products were detected, structure proposals and formation pathways were elaborated. Attempts were made to understand the correlation between the transformation products and acute toxicity on Vibrio fischeri strain. It is the first time that an integrated study reported on the ozonation of pharmaceuticals in urban membrane concentrates, in terms of transformation products, kinetics, degradation mechanisms, as well as toxicity assessment.


Subject(s)
Filtration/methods , Membranes, Artificial , Nanotechnology , Ozone/chemistry , Salts/isolation & purification , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Acetaminophen/isolation & purification , Atenolol/isolation & purification , Carbamazepine/isolation & purification , Chromatography, Liquid , Osmosis , Salts/chemistry , Salts/toxicity , Tandem Mass Spectrometry , Toxicity Tests, Acute , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
4.
Chemosphere ; 165: 497-506, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27681105

ABSTRACT

Global population growth induces increased threat on drinking water resources. One way to address this environmental issue is to reuse water from wastewater treatment plant. The presence of pathogenic microorganisms and potentially toxic organic micropollutants does not allow a direct reuse of urban effluents. Membrane processes such reverse osmosis (RO) or nanofiltration (NF) can be considered to effectively eliminate these pollutants. The integration of membrane processes involves the production of concentrated retentates which require being disposed. To date, no treatment is set up to manage safely this pollution. This work focuses on the application of ozonation for the treatment of NF retentates in the framework of the wastewater reuse. Ozonation is a powerful oxidation process able to react and degrade a wide range of organic pollutants. Four pharmaceutical micropollutants were selected as target molecules: acetaminophen, carbamazepine, atenolol and diatrozic acid. This study highlighted that NF represents a viable alternative to the commonly used RO process ensuring high retention at much lower operating costs. Ozonation appears to be effective to degrade the most reactive pollutants toward molecular ozone but is limited for the reduction of refractory ozone pollutants due to the inhibition of the radical chain by the high content of organic matter in the retentates. The ozonation process appears to be a promising NF retentate treatment, but additional treatments after ozonation are required to lead to a zero liquid discharge treatment scheme.


Subject(s)
Filtration/methods , Oxidants/chemistry , Ozone/chemistry , Water Pollutants, Chemical/chemistry , Acetaminophen/chemistry , Atenolol/chemistry , Carbamazepine/chemistry , Diatrizoate/chemistry , Nanotechnology , Oxidation-Reduction , Recycling , Waste Disposal, Fluid , Wastewater/chemistry , Water Purification
5.
Water Res ; 104: 156-167, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27522026

ABSTRACT

The objective of this paper is to help understanding the distinctive influence of the matrix and of the flux decline (e.g. through the cake enhanced concentration polarization (CECP) phenomenon) on the removal mechanisms of four pharmaceutically active compounds (PhACs) from wastewater treatment plant (WWTP) effluent by nanofiltration (NF). PhACs which are commonly encountered in secondary treated effluent were spiked in various matrix (real and synthetic) to investigate the separate and synergetic effects of the organic and ionic environment on PhACs rejection by two commercial membranes (NF-90 and NF-270). With pure water, rejection of NF membranes is dependent on the type of PhACs and of the permeate flux variations. Then, it appeared that the rejection of PhACs by NF-90 was poorly influenced by the type of compounds, because of the prevalence of steric mechanisms, but rather influenced by permeate flux variations and thus to fouling. For this tight NF membrane, CECP impacts PhACs rejection at the start of filtration while after a dense cake is formed, it became enhanced. On the contrary, rejections of PhACs by the NF-270 were enhanced during the filtration of the real wastewater in comparison with spiked pure water. It appeared that for loose-NF membranes, PhACs rejection is mainly governed by solute-solute interactions (EfOM-compound association) or electrostatic membrane-solute interactions. Finally, it seems that calcium concentration of the effluent is a critical parameter for the rejection of PhACs as it alters both the availability of sites for PhACs association and the fouling layer density. Rejections of the NF-270 were negatively impacted in the presence of Ca2+. Such a study has practical implications for further understanding of the fate of trace organic compounds during nanofiltration of wastewater for reuse applications.


Subject(s)
Wastewater , Water Purification , Filtration , Membranes, Artificial , Organic Chemicals , Water Pollutants, Chemical
6.
Environ Pollut ; 180: 229-35, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23792382

ABSTRACT

A submerged membrane bioreactor has been operated at the laboratory scale for the treatment of a synthetic effluent containing Bisphenol-A (BPA). COD, NH4-N, PO4-P and BPA were eliminated respectively, at 99%, 99%, 61% and 99%. The increase of volumetric loading rate from 0 to 21.6 g/m(3)/d did not affect the performance of the MBR system. However, the removal rate decreased rapidly when the BPA loading rate increased above 21.6 g/m(3)/d. The adsorption process of BPA on the biomass was very well described by Freundlich and Langmuir isotherms. Subsequently, biodegradation of BPA occurred and followed the first order kinetic reaction, with a constant rate of 1.13 ± 0.22 h(-1). During treatment, membrane fouling was reversible in the first 84 h of filtration, and then became irreversible. The membrane fouling was mainly due to the accumulation of suspended solid and development of biofilm on the membrane surface.


Subject(s)
Benzhydryl Compounds/analysis , Phenols/analysis , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Biofilms , Bioreactors , Membranes, Artificial
SELECTION OF CITATIONS
SEARCH DETAIL
...