Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(34): 30790-30801, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37663473

ABSTRACT

Wettability alteration has been identified to be one of the important mechanisms to improve the microscopic recovery in many of the enhanced oil recovery (EOR) methods including polymer flood, surfactant flood, low salinity flood, microbial flood, alkaline flood, etc. Ensuring the oil-wet nature of the formation before flooding in the laboratory is necessary to study the efficiency of the EOR process, which targets microscopic recovery through wettability alteration. Nevertheless, altering the wettability depends on several parameters, such as aging time, aging temperature, core nature, oil properties, etc. Although several researchers investigated the effect of individual parameters on wettability alteration, the literature is scarce, and the question of what is the shortest and yet the most reliable aging time for ensuring wettability alteration for the specific rock-oil system at different temperatures remains unclear. This paper attempts to seek an answer to this question by compiling the relevant literature to find the effect of individual parameters such as different aging times, temperatures, oil compositions, and rock lithologies on wettability alteration. Results observed from data analysis showed different windows for aging conditions depending on the core sample lithology, initial wettability, and type of oil used. It was noticed that the higher the asphaltene content in the crude oil used, the lower the time and temperature that it takes to alter the sample wettability. Aging a sandstone core under 80 °C using crude oil with 11 wt % % asphaltene took 7 days to shift the core from strongly water-wet to neutral-wet. The same wettability alteration was achieved in 14 days when aging the sandstone sample at 90 °C using crude oil with 0.85 wt % asphaltene content. Generally, it was observed that the aging time decreased as the temperature increased. Moreover, as the sample has a lower initial water wettability condition, the time that it needs to be aged becomes higher. Results indicated that carbonates in general require less aging time to alter their wettability condition to oil-wet, around 1-7 days, compared with sandstones, around 14-21 days.

2.
Langmuir ; 37(46): 13645-13653, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34753288

ABSTRACT

Surfactant-polymer interaction has been studied by many academic and industrial researchers. Associative polymers have attracted attention, especially in enhanced oil recovery due to their ability to generate higher resistance than parental polyacrylamide (HPAM) at a lower concentration. The effect of hydrophobicity on the associative polymer-surfactant interaction has been studied through many means including rheology. Previous rheological studies were restricted to shear-based behavior, and no efforts were undertaken to study the effect of hydrophobicity on the extensional rheological behavior of the surfactant-HPAM system. In this work, the extensional behavior of anionic surfactant-polyacrylamide systems was studied for varying levels of hydrophobicity. The concentration of the surfactant used in the surfactant-polymer formulation ranged from 0 to 0.3%, and the polymer concentration was fixed at 1000 ppm. Extensional rheology was performed using a capillary breakup extensional rheometer. Surface tension studies were also conducted. The results revealed that the parental HPAM-surfactant system shows the maximum extensional viscosity for the concentration range studied here. This is contrary to shear behavior reported in the literature, and it appears that electrostatic repulsive interaction associated with HPAM-surfactant systems becomes dominant in the extensional field. Associative polymer-surfactant systems characterized by higher hydrophobicity showed the least maximum extensional viscosity, as opposed to the literature-reported behavior in the shear field. Hydrophobic interaction associated with associative polymer-surfactant systems appears to become weaker in the extensional field.

3.
ACS Omega ; 5(48): 30787-30798, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33324788

ABSTRACT

Polymer solutions flowing in the porous media during enhanced oil recovery (EOR) processes are subjected to both shear and extensional rheological deformation. However, the previous rheological studies conducted on a surfactant-polymer (SP) system or polymer systems were only shear-based. In this paper, the extensional rheological performance of hydrolyzed polyacrylamide (HPAM) in the presence of an anionic surfactant at various concentrations (0, 0.01, 0.05, 0.1, 0.2, and 0.3%) is studied with deionized water and 1% NaCl. Further, the extensional rheological behavior of HPAM in the presence of NaCl and CaCl2 is studied at varying ionic strengths (1-10%). A capillary break-up extensional rheometer is used for performing extensional rheological characterization. Results revealed that the extensional resistance of HPAM is enhanced in the presence of a surfactant. Particularly, around the critical micelle concentration value of the surfactant (0.1%), HPAM showed higher extensional resistance. Higher extensional resistance for the SP system is observed with deionized water when compared to 1% NaCl. HPAM showed improved performance at 1% NaCl salinity when compared to the higher concentration of NaCl salinity. However, the presence of even 1% of calcium ions is detrimental to the extensional properties of HPAM.

SELECTION OF CITATIONS
SEARCH DETAIL
...