Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biosci Rep ; 37(3)2017 Jun 30.
Article in English | MEDLINE | ID: mdl-28336764

ABSTRACT

Moringa oleifera has potential anti-hyperglycaemic effects that have been reported earlier by different scientific groups using animal models of diabetes. We aimed to explore the possible mechanisms of action of M. oleifera extract through different methods. Primarily, we measured fasting blood glucose and performed glucose tolerance test, in Type 2 diabetic rats. Further, we studied the effects of extracts on pancreatic insulin concentration. Extracts' effect on carbohydrate breakdown was assayed using α-amylase inhibition assays and assay of six different segments of gastrointestinal (GI) tracts. An in situ intestinal perfusion model and a glucose fibre assay were performed to see the potentiality of M. oleifera on glucose absorption. M. oleifera showed no significant change in insulin secretion in vivo Additionally, substantial effect of the extract was seen on retarded glucose absorption and in the in situ perfusion study of rat intestinal model. α-amylase action was inhibited by the extract, yet again, these findings were further confirmed via the Six Segment assay, where sucrose digestion was found to be inhibited throughout the length of the GI tract. A combined in vitro, in vivo and in situ tests justified the potential of anti-hyperglycaemic activity of M. oleifera and its tissue level mechanism is also justified.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Glycoside Hydrolases/antagonists & inhibitors , Hyperglycemia/drug therapy , Hypoglycemic Agents/therapeutic use , Moringa oleifera , Plant Extracts/therapeutic use , Animals , Blood Glucose/analysis , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Glycoside Hydrolases/metabolism , Hyperglycemia/blood , Hyperglycemia/metabolism , Hypoglycemic Agents/pharmacology , Insulin/metabolism , Intestinal Absorption/drug effects , Moringa oleifera/chemistry , Plant Extracts/pharmacology , Rats , Rats, Long-Evans
2.
J Basic Clin Physiol Pharmacol ; 28(2): 171-179, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28121616

ABSTRACT

BACKGROUND: This study aims to evaluate the scientific basis of traditional application of Persicaria orientalis for reducing pain and inflammation. METHODS: An in vitro method was performed to investigate the presence of the anti-inflammatory activity of methanolic crude extract of P. orientalis. In addition, an in vivo study was conducted in which the hot-plate and tail immersion methods were applied to explore the acute effect of P. orientalis on analgesia. The potency to inhibit chronic inflammation in mice was justified by the carrageenan-induced paw edema and formalin-induced edema methods. For all in vivo testing in animal models (albino mice and rats), plant extract was given via the oral route at doses of 250 mg/kg and 500 mg/kg. RESULTS: The methanolic extract of P. orientalis produced a significant (p<0.001) inhibition of analgesia with a prolongation of pain response time by 61.80% at 500 mg/kg. The extract also exhibited a potential anti-inflammatory (56.99%) effect, which was also statistically significant (p<0.001). The present study suggests that the methanolic extract of P. orientalis has potential anti-inflammatory as well as analgesic activity and this extract is effective in the treatment of both acute and chronic pain. CONCLUSIONS: Our current study revealed pharmacological properties of the methanolic extract of P. orientalis and also gave a solid scientific platform against its traditional use. The protecting ability of P. orientalis against inflammatory stimuli may be due to phenolic or flavonoid compounds which we have found through phytochemical analysis.


Subject(s)
Analgesics/pharmacology , Pain Measurement/drug effects , Plant Extracts/pharmacology , Plant Leaves , Polygonaceae , Analgesics/isolation & purification , Analgesics/therapeutic use , Animals , Dose-Response Relationship, Drug , Edema/drug therapy , Edema/pathology , Humans , Methanol/pharmacology , Methanol/therapeutic use , Mice , Pain/drug therapy , Pain/pathology , Pain Measurement/methods , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Rats , Rats, Wistar
3.
J Pediatr Endocrinol Metab ; 30(1): 37-47, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-28002030

ABSTRACT

BACKGROUND: Aegle marmelos (commonly known as Bael, golden apple) was formerly described to have anti-hyperglycemic activity. The present study aimed to explore the possible effects, in depth, of A. marmelos extracts on carbohydrate absorption, glucose utilization, and α-amylase inhibition and insulin content in pancreases of type 2 diabetic rats. METHODS: This research begins with fasting blood glucose and oral glucose tolerance test (OGTT) to evaluate the primary anti-hyperglycemic effect in chemically induced type 2 diabetic rats. Furthermore, the plasma insulin concentration and serum glucose level were studied, which include measuring the sucrose content in six different segments of the gastrointestinal (GI) tract of the rats following oral sucrose feeding. An in situ, perfused, intestinal model in rats and glucose-fiber binding assay were conducted to find the effects of A. marmelos extracts on glucose absorption. Extract effects on carbohydrate breakdown, intestinal disaccharidase enzyme activity, and α-amylase inhibition were assessed. Effect on GI motility was evaluated using BaSO4 milk traverse test. RESULTS: Treatment of extracts suppressed blood glucose elevation after oral sucrose (2.5 g/kg) administration and significantly (p<0.05) improved oral glucose tolerance in type 2 diabetic rats. Aegle marmelos extracts showed remarkable (p<0.05) changes in plasma insulin secretion at 30 min and 60 min, respectively. A noticeable reduction in glucose absorption was observed in the in situ perfused rat intestinal model at two different doses (250 and 500 mg/kg). The extract was also found to inhibit the action of both α-amylase and intestinal disaccharidase enzyme, and this study was affirmed again by the sucrose malabsorption test, where sucrose digestion was inhibited throughout the length of the GI tract. During this chronic study, body mass of rats became normal and their polydipsic and polyphagic conditions were ameliorated also. CONCLUSIONS: The findings demonstrate that anti-hyperglycemic activity of A. marmelos is mediated by the inhibition of carbohydrate digestion and absorption, and improvement of insulin action to uptake glucose in peripheral tissue. Additional study is required to correlate A. marmelos extracts' specific mechanism of glucose-fiber binding capacity and glucose transporters.


Subject(s)
Aegle/chemistry , Diabetes Mellitus, Experimental/drug therapy , Glucose/metabolism , Hyperglycemia/prevention & control , Hypoglycemic Agents/pharmacology , Insulin/metabolism , Plant Extracts/pharmacology , alpha-Amylases/antagonists & inhibitors , Animals , Diabetes Mellitus, Experimental/metabolism , Glucose Tolerance Test , Insulin Secretion , Rats , Rats, Long-Evans
SELECTION OF CITATIONS
SEARCH DETAIL
...