Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 123(3): 307-316, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38158654

ABSTRACT

Many cell functions require a concerted effort from multiple membrane proteins, for example, for signaling, cell division, and endocytosis. One contribution to their successful self-organization stems from the membrane deformations that these proteins induce. While the pairwise interaction potential of two membrane-deforming spheres has recently been measured, membrane-deformation-induced interactions have been predicted to be nonadditive, and hence their collective behavior cannot be deduced from this measurement. We here employ a colloidal model system consisting of adhesive spheres and giant unilamellar vesicles to test these predictions by measuring the interaction potential of the simplest case of three membrane-deforming, spherical particles. We quantify their interactions and arrangements and, for the first time, experimentally confirm and quantify the nonadditive nature of membrane-deformation-induced interactions. We furthermore conclude that there exist two favorable configurations on the membrane: (1) a linear and (2) a triangular arrangement of the three spheres. Using Monte Carlo simulations, we corroborate the experimentally observed energy minima and identify a lowering of the membrane deformation as the cause for the observed configurations. The high symmetry of the preferred arrangements for three particles suggests that arrangements of many membrane-deforming objects might follow simple rules.


Subject(s)
Membrane Proteins , Monte Carlo Method
2.
Nano Lett ; 23(10): 4267-4273, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37141427

ABSTRACT

Endocytosis is a key cellular process involved in the uptake of nutrients, pathogens, or the therapy of diseases. Most studies have focused on spherical objects, whereas biologically relevant shapes can be highly anisotropic. In this letter, we use an experimental model system based on Giant Unilamellar Vesicles (GUVs) and dumbbell-shaped colloidal particles to mimic and investigate the first stage of the passive endocytic process: engulfment of an anisotropic object by the membrane. Our model has specific ligand-receptor interactions realized by mobile receptors on the vesicles and immobile ligands on the particles. Through a series of experiments, theory, and molecular dynamics simulations, we quantify the wrapping process of anisotropic dumbbells by GUVs and identify distinct stages of the wrapping pathway. We find that the strong curvature variation in the neck of the dumbbell as well as membrane tension are crucial in determining both the speed of wrapping and the final states.

3.
Biomed Opt Express ; 10(11): 5639-5649, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31799036

ABSTRACT

The force experienced by a neutral dielectric object in the presence of a spatially non-uniform electric field is referred to as dielectrophoresis (DEP). The proper quantification of DEP force in the single-cell level could be of great importance for the design of high-efficiency micro-fluidic systems for the separation of biological cells. In this report we show how optical tweezers can be properly utilized for proper quantification of DEP force experienced by a human RBC. By tuning the temporal frequency of the applied electric field and also performing control experiments and comparing our experimental results with that of theoretically calculated, we show that the measured force is a pure DEP force. Our results show that in the frequency range of 0.1-3 M H z the DEP force acting on RBC is frequency independent.

4.
Biomed Opt Express ; 9(3): 1256-1261, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29541518

ABSTRACT

Optical tweezers are proven indispensable single-cell micro-manipulation and mechanical phenotyping tools. In this study, we have used optical tweezers for measuring the viscoelastic properties of human red blood cells (RBCs). Comparison of the viscoelastic features of the healthy fresh and atorvastatin treated cells revealed that the drug softens the cells. Using a simple modeling approach, we proposed a molecular model that explains the drug-induced softening of the RBC membrane. Our results suggest that direct interactions between the drug and cytoskeletal components underlie the drug-induced softening of the cells.

5.
Res Pharm Sci ; 10(5): 460-5, 2015.
Article in English | MEDLINE | ID: mdl-26752995

ABSTRACT

Stress has a profound impact on the nervous system and causes cognitive problems that are partly related to the inflammatory effects. Besides influencing the content of neurotransmitters, antidepressants such as doxepin are likely to have anti-inflammatory, anti-oxidative, and anti-apoptotic effects. Therefore, the present study investigated the effects of doxepin on passive avoidance learning and the levels of tumor necrosis factor-alpha (TNF-α) in the rat hippocampus following repeated restraint stress. Male Wistar rats were divided into five groups. Chronic stress was induced by keeping animals within an adjustable restraint chamber for 6 h every day for 21 successive days. In stress-doxepin group, stressed rats were given 1, 5 and 10 mg/kg of doxepin intraperitoneally (i.p) for 21 days and before placing them in restraint chamber. Healthy animals who served as control group and stressed rats received normal saline i.p. For evaluation of learning and memory, initial latency and step-through latency were determined using passive avoidance learning test. TNF-α levels were measured in hippocampus by enzyme-linked immunosorbant assay (ELISA) at the end of experiment. Induced stress considerably decreased the step through latencies in the rats (P<0.05) but doxepin administration prevented these changes. Stress-doxepin groups did not reveal any differences compared to control group at any given doses. TNF-α level was increased significantly (P<0.05) in stress group. Only the low dose of doxepin (1 mg/kg) decreased TNF-α level. The present findings indicated that learning and memory are impaired in stressful conditions and doxepin prevented memory deficit. It seems that inflammation may involve in induced stress memory deficits, and that doxepin is helpful in alleviating the neural complications due to stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...