Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(5): 4170-4179, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38275286

ABSTRACT

While metal nanoparticles are widely used, their small size makes them mechanically unstable. Extensive prior research has demonstrated that nanoparticles with sizes in the range of 10-50 nm fail by the surface nucleation of dislocations, which is a thermally activated process. Two different contributions have been suggested to cause the weakening of smaller particles: first, geometric effects such as increased surface curvature reduce the barrier for dislocation nucleation; second, surface diffusion happens faster on smaller particles, thus accelerating the formation of surface kinks which nucleate dislocations. These two factors are difficult to disentangle. Here we use in situ compression testing inside a transmission electron microscope to measure the strength and deformation behavior of platinum particles in three groups: 12 nm bare particles, 16 nm bare particles, and 12 nm silica-coated particles. Thermodynamics calculations show that, if surface diffusion were the dominant factor, the last two groups would show equal strengthening. Our experimental results refute this, instead demonstrating a 100% increase in mean yield strength with increased particle size and no statistically significant increase in strength due to the addition of a coating. A separate analysis of stable plastic flow corroborates the findings, showing an order-of-magnitude increase in the rate of dislocation nucleation with a change in particle size and no change with coating. Taken together, these results demonstrate that surface diffusion plays a far smaller role in the failure of nanoparticles by dislocations as compared to geometric factors that reduce the energy barrier for dislocation nucleation.

2.
ACS Nano ; 17(9): 8133-8140, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37098787

ABSTRACT

The mechanical behavior of nanostructures is known to transition from a Hall-Petch-like "smaller-is-stronger" trend, explained by dislocation starvation, to an inverse Hall-Petch "smaller-is-weaker" trend, typically attributed to the effect of surface diffusion. Yet recent work on platinum nanowires demonstrated the persistence of the smaller-is-stronger behavior down to few-nanometer diameters. Here, we used in situ nanomechanical testing inside of a transmission electron microscope (TEM) to study the strength and deformation mechanisms of platinum nanoparticles, revealing the prominent and size-dependent role of surfaces. For larger particles with diameters from 41 nm down to approximately 9 nm, deformation was predominantly displacive yet still showed the smaller-is-weaker trend, suggesting a key role of surface curvature on dislocation nucleation. For particles below 9 nm, the weakening saturated to a constant value and particles deformed homogeneously, with shape recovery after load removal. Our high-resolution TEM videos revealed the role of surface atom migration in shape change during and after loading. During compression, the deformation was accommodated by atomic motion from lower-energy facets to higher-energy facets, which may indicate that it was governed by a confined-geometry equilibration; when the compression was removed, atom migration was reversed, and the original stress-free equilibrium shape was recovered.

3.
Nanoscale Adv ; 4(18): 3978-3986, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36133342

ABSTRACT

While it is well established that nanoparticle shape can depend on equilibrium thermodynamics or growth kinetics, recent computational work has suggested the importance of thermal energy in controlling the distribution of shapes in populations of nanoparticles. Here, we used transmission electron microscopy to characterize the shapes of bare platinum nanoparticles and observed a strong dependence of shape distribution on particle size. Specifically, the smallest nanoparticles (<2.5 nm) had a truncated octahedral shape, bound by 〈111〉 and 〈100〉 facets, as predicted by lowest-energy thermodynamics. However, as particle size increased, the higher-energy 〈110〉 facets became increasingly common, leading to a large population of non-equilibrium truncated cuboctahedra. The observed trends were explained by combining atomistic simulations (both molecular dynamics and an empirical square-root bond-cutting model) with Boltzmann statistics. Overall, this study demonstrates experimentally how thermal energy leads to shape variation in populations of metal nanoparticles, and reveals the dependence of shape distributions on particle size. The prevalence of non-equilibrium facets has implications for metal nanoparticles applications from catalysis to solar energy.

4.
RSC Adv ; 10(35): 20515-20520, 2020 May 27.
Article in English | MEDLINE | ID: mdl-35517735

ABSTRACT

Recent increasing uses of ceria in research and industrial applications have fostered continuing developments of efficient routes to synthesize the material. Here we report our investigation of the effects and the mechanistic roles of lithium acetate to accelerate the growth of crystalline ceria nanoparticles in ozone-mediated synthesis. By increasing the mole ratio of the acetate to cerium nitrate in the reactions, the reaction yields of ceria nanoparticles were observed to increase from ca. 10% to up to over 90% by cerium content in 30 min reactions. Microscopy images and Raman spectra of the as-synthesized nanoparticles revealed that increasing the acetate additions led to a decrease in average particle size and size range but an increase in crystallinity. Through analyzing the organic by-products in the reaction mixtures, the acetate was inferred to base-catalyze the formation of acetals and cerium complexes and accelerate the formation of Ce-O-Ce bonds and hence the growth of ceria nanoparticles through alcohol-like condensation reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...