Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(33): 39697-39706, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37579298

ABSTRACT

The interest in the wafer-scale growth of two-dimensional (2D) materials, including transition metal dichalcogenides (TMDCs), has been rising for transitioning from lab-scale devices to commercial-scale systems. Among various synthesis techniques, physical vapor deposition, such as pulsed laser deposition (PLD), has shown promise for the wafer-scale growth of 2D materials. However, due to the high volatility of chalcogen atoms (e.g., S and Se), films deposited by PLD usually suffer from a lack of stoichiometry and chalcogen deficiency. To mitigate this issue, excess chalcogen is necessary during the deposition, which results in problems like uniformity or not being repeatable. This study demonstrates a condensed-phase or amorphous phase-mediated crystallization (APMC) approach for the wafer-scale synthesis of 2D materials. This method uses a room-temperature PLD process for the deposition and formation of amorphous precursors with controlled thicknesses, followed by a post-deposition crystallization process to convert the amorphous materials to crystalline structures. This approach maintains the stoichiometry of the deposited materials throughout the deposition and crystallization process and enables the large-scale synthesis of crystalline 2D materials (e.g., MoS2 and WSe2) on Si/SiO2 substrates, which is critical for future wafer-scale electronics. We show that the thickness of the layers can be digitally controlled by the number of laser pulses during the PLD phase. Optical spectroscopy is used to monitor the crystallization dynamics of amorphous layers as a function of annealing temperature. The crystalline quality, domain sizes, and the number of layers were explored using nanoscale and atomistic characterization (e.g., AFM, STEM, and EDS) along with electrical characterization to explore process-structure-performance relationships. This growth technique is a promising method that could potentially be adopted in conventional semiconductor industries for wafer-scale manufacturing of next-generation electronic and optoelectronic devices.

2.
ACS Nano ; 17(13): 12519-12529, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37339265

ABSTRACT

Understanding and controlling the growth evolution of atomically thin monolayer two-dimensional (2D) materials such as transition metal dichalcogenides (TMDCs) are vital for next-generation 2D electronics and optoelectronic devices. However, their growth kinetics are not fully observed or well understood due to the bottlenecks associated with the existing synthesis methods. This study demonstrates the time-resolved and ultrafast growth of 2D materials by a laser-based synthesis approach that enables the rapid initiation and termination of the vaporization process during crystal growth. The use of stoichiometric powder (e.g., WSe2) minimizes the complex chemistry during the vaporization and growth process, allowing rapid initiation/termination control over the generated flux. An extensive set of experiments is performed to understand the growth evolution, achieving subsecond growth as low as 10 ms along with a 100 µm/s growth rate on a noncatalytic substrate such as Si/SiO2. Overall, this study allows us to observe and understand the 2D crystal evolution and growth kinetics with time-resolved and subsecond time scales.

3.
Int J Biol Macromol ; 245: 125494, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37348586

ABSTRACT

The demand for advanced wound care products is rapidly increasing nowadays. In this study, gellan gum/collagen (GG/C) hydrogel films containing gatifloxacin (GAT) were developed to investigate their properties as wound dressing materials. ATR-FTIR, swelling, water content, water vapor transmission rate (WVTR), and thermal properties were investigated. The mechanical properties of the materials were tested in dry and wet conditions to understand the performance of the materials after exposure to wound exudate. Drug release by Franz diffusion was measured with all samples showing 100 % cumulative drug release after 40 min. Strong antibacterial activities against Staphylococcus aureus and Staphylococcus epidermis were observed for Gram-positive bacteria, while Escherichia coli and Pseudomonas aeruginosa were observed for Gram-negative bacteria. The in-vivo cytotoxicity of GG/C-GAT was assessed by wound contraction in rats, which was 95 % for GG/C-GAT01. Hematoxylin and eosin and Masson's trichrome staining revealed the appearance of fresh full epidermis and granulation tissue, indicating that all wounds had passed through the proliferation phase. The results demonstrate the promising properties of the materials to be used as dressing materials.


Subject(s)
Anti-Bacterial Agents , Collagen , Rats , Animals , Gatifloxacin , Anti-Bacterial Agents/pharmacology , Bandages/microbiology , Hydrogels/pharmacology
4.
Adv Mater ; 34(23): e2110568, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35355335

ABSTRACT

Strain-engineering in 2D transition metal dichalcogenide (TMD) semiconductors has garnered intense research interest in tailoring the optical properties via strain-induced modifications of the electronic bands in TMDs, while its impact on the exciton dynamics remains less understood. To address this, an extensive study of transient optical absorption (TA) of both W- and Mo-based single-crystalline monolayer TMDs grown by a recently developed laser-assisted evaporation method is performed. All spectral features of the monolayers as grown on fused silica substrates exhibit appreciable redshifts relating to the existence of strain due to growth conditions. Moreover, these systems exhibit a dramatic slowing down of exciton dynamics (100s of picoseconds to few nanoseconds) with an increase in carrier densities, which strongly contrasts with the monolayers in their freestanding form as well as in comparison with more traditionally grown TMDs. The observations are related to the modifications of the electronic bands as expected from the strain and associated population of the intervalley dark excitons that can now interplay with intravalley excitations. These findings are consistent across both the Mo- and W-based TMD families, providing key information about the influence of the growth conditions on the nature of optical excitations and fostering emerging optoelectronic applications of monolayer TMDs.

5.
ACS Nano ; 15(7): 11461-11469, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34181385

ABSTRACT

The emergence of rapidly expanding infectious diseases such as coronavirus (COVID-19) demands effective biosensors that can promptly detect and recognize the pathogens. Field-effect transistors based on semiconducting two-dimensional (2D) materials (2D-FETs) have been identified as potential candidates for rapid and label-free sensing applications. This is because any perturbation of such atomically thin 2D channels can significantly impact their electronic transport properties. Here, we report the use of FET based on semiconducting transition metal dichalcogenide (TMDC) WSe2 as a promising biosensor for the rapid and sensitive detection of SARS-CoV-2 in vitro. The sensor is created by functionalizing the WSe2 monolayers with a monoclonal antibody against the SARS-CoV-2 spike protein and exhibits a detection limit of down to 25 fg/µL in 0.01X phosphate-buffered saline (PBS). Comprehensive theoretical and experimental studies, including density functional theory, atomic force microscopy, Raman and photoluminescence spectroscopies, and electronic transport properties, were performed to characterize and explain the device performance. The results demonstrate that TMDC-based 2D-FETs can potentially serve as sensitive and selective biosensors for the rapid detection of infectious diseases.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2 , COVID-19/diagnosis , Spike Glycoprotein, Coronavirus , Biosensing Techniques/methods
6.
Nanomaterials (Basel) ; 11(3)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803656

ABSTRACT

Two-dimensional transition metal dichalcogenides (2D-TMDs) hold a great potential to platform future flexible optoelectronics. The beating hearts of these materials are their excitons known as XA and XB, which arise from transitions between spin-orbit split (SOS) levels in the conduction and valence bands at the K-point. The functionality of 2D-TMD-based devices is determined by the dynamics of these excitons. One of the most consequential channels of exciton decay on the device functionality is the defect-assisted recombination (DAR). Here, we employ steady-state absorption and emission spectroscopies, and pump density-dependent femtosecond transient absorption spectroscopy to report on the effect of DAR on the lifetime of excitons in monolayers of tungsten disulfide (2D-WS2) and diselenide (2D-WSe2). These pump-probe measurements suggested that while exciton decay dynamics in both monolayers are driven by DAR, in 2D-WS2, defect states near the XB exciton fill up before those near the XA exciton. However, in the 2D-WSe2 monolayer, the defect states fill up similarly. Understanding the contribution of DAR on the lifetime of excitons and the partition of this decay channel between XA and XB excitons may open new horizons for the incorporation of 2D-TMD materials in future optoelectronics.

7.
Article in English | MEDLINE | ID: mdl-33299445

ABSTRACT

Wound healing is a well-coordinated process that restores skin integrity upon injury. However, some wound treatment poses harmful effects on the skin, which delay the normal wound healing process. Marphysa moribidii, a marine baitworm or polychaete, represents unique ability to regenerate posterior segment after injury, which may be beneficial in the wound healing treatment. The effectiveness of the polychaete as wound healing treatment was discovered through skin irritation, microbial testing, animal wound model, and chemical identifications. Three polychaete extracts (PE) emulsifying ointment (0.1%, 0.5%, and 1.0%) were topically applied to the full thickness wound model once daily for 14 days. Interestingly, PE 1.0% revealed the most rapid wound healing effects as compared to other treatments, including gamat (sea cucumber) oil (15% w/v) and acriflavine (0.1% w/v). Histopathological analysis using Masson's trichrome staining further confirms that PE treated wound exhibited minimal scar, high collagen deposition, and the emergence of neovascularisation. The extract also displayed a minimum inhibitory concentration (MIC) of 0.4 g/ml against Escherichia coli and absence of skin irritation, infectious bacteria, and heavy metals from the extract. Moreover, chemical compounds such as alkaloid, flavonoid, amino acids, and organic acid were detected in M. moribidii extracts, which could contribute to wound healing activity. In conclusion, this study further justifies the beneficial use of polychaete in treating wound healing and could be developed as a novel bioactive agent in nutraceuticals and pharmaceutical drugs.

8.
ACS Appl Mater Interfaces ; 12(45): 51069-51081, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33108155

ABSTRACT

This work reports the interfacial thermal conductance (G) and radiative recombination efficiency (ß), also known as photoluminescence quantum yield (PL QY), of monolayer WSe2 flakes supported by fused silica substrates via energy-transport state-resolved Raman (ET-Raman). This is the first known work to consider the effect of radiative electron-hole recombination on the thermal transport characteristics of single-layer transition-metal dichalcogenides (TMDs). ET-Raman uses a continuous-wave laser for steady-state heating as well as nanosecond and picosecond lasers for transient energy transport to simultaneously heat the monolayer flakes and extract the Raman signal. The three lasers induce distinct heating phenomena that distinguish the interfacial thermal conductance and radiative recombination efficiency, which can then be determined in tandem with three-dimensional (3D) numerical modeling of the temperature rise from respective laser irradiation. For the five samples measured, G is found to range from 2.10 ± 0.14 to 15.9 ± 5.0 MW m-2 K-1 and ß ranges from 36 ± 6 to 65 ± 7%. These values support the claim that interfacial phenomena such as surface roughness and two-dimensional (2D) material-substrate bonding strength play critical roles in interfacial thermal transport and electron-hole recombination mechanisms in TMD monolayers. It is also determined that low-level defect density enhances the radiative recombination efficiency of single-layer WSe2.

9.
Phys Chem Chem Phys ; 22(30): 17385-17393, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32705108

ABSTRACT

Excitons in two-dimensional transition metal dichalcogenide monolayers (2D-TMDs) are of essential importance due to their key involvement in 2D-TMD-based applications. For instance, exciton dissociation and exciton radiative recombination are indispensible processes in photovoltaic and light-emitting devices, respectively. These two processes depend drastically on the photogeneration efficiency and lifetime of excitons. Here, we incorporate femtosecond pump-probe spectroscopy to investigate the ultrafast dynamics of exciton formation and decay in a single crystal of monolayer 2D tungsten disulfide (WS2). Investigation of the formation dynamics of the lowest exciton (XA) indicated that the formation time linearly increases from ∼150 fs upon resonant excitation, to ∼500 fs following excitation that is ∼1.1 eV above the band-gap. This dependence is attributed to the time it takes highly excited electrons in the conduction band (CB) to relax to the CB minimum (CBM) and contribute to the formation of XA. This is confirmed by infrared measurements of electron intraband relaxation dynamics. Furthermore, pump-probe experiments suggested that the XA ground state depletion recovery dynamics depend on the excitation energy as well. The average recovery time increased from ∼10 ps in the case of resonant excitation to ∼50 ps following excitation well above the band-gap. Having the ability to control whether generating short-lived or long-lived electron-hole pairs in 2D-TMD monolayers opens a new horizon for the application of these materials. For instance, long-lived electron-hole pairs are appropriate for photovoltaic devices, but short-lived excitons are more beneficial for lasers with ultrashort pulses.

10.
Nanomaterials (Basel) ; 10(5)2020 May 08.
Article in English | MEDLINE | ID: mdl-32397239

ABSTRACT

Interest in layered two-dimensional (2D) materials has been escalating rapidly over the past few decades due to their promising optoelectronic and photonic properties emerging from their atomically thin 2D structural confinements. When these 2D materials are further confined in lateral dimensions toward zero-dimensional (0D) structures, 2D nanoparticles and quantum dots with new properties can be formed. Here, we report a nonequilibrium gas-phase synthesis method for the stoichiometric formation of gallium selenide (GaSe) nanoparticles ensembles that can potentially serve as quantum dots. We show that the laser ablation of a target in an argon background gas condenses the laser-generated plume, resulting in the formation of metastable nanoparticles in the gas phase. The deposition of these nanoparticles onto the substrate results in the formation of nanoparticle ensembles, which are then post-processed to crystallize or sinter the nanoparticles. The effects of background gas pressures, in addition to crystallization/sintering temperatures, are systematically studied. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, and time-correlated single-photon counting (TCSPC) measurements are used to study the correlations between growth parameters, morphology, and optical properties of the fabricated 2D nanoparticle ensembles.

11.
Article in English | MEDLINE | ID: mdl-33488747

ABSTRACT

Diopatra claparedii which is colloquially known as Ruat Sarung can be found along the west coast of Peninsular Malaysia. The species has a unique ability to regenerate anterior and posterior segments upon self-amputation or injury, thus having potential as a wound healing promoter. In this study, the wound healing potential of D. claparedii aqueous extract on acute wound model in rats was revealed for the first time. Various concentrations (0.1%, 0.5%, and 1.0% w/w) of D. claparedii ointment were formulated and tested on Sprague Dawley rats through topical application on full-thickness skin wounds for 14 days. The wound healing effects were investigated via behaviour observation, wound contraction, and histopathological analysis. Quality assessment was performed via skin irritation test, microbial contamination test (MCT), and heavy metal detection. The study also included test for antibacterial activities and detection of bioactive compounds in D. claparedii. One percent of D. claparedii ointment showed rapid wound healing potential with good soothing effects and more collagen deposition in comparison to the commercial wound healing ointments such as acriflavine (0.1% w/v) and traditional ointment gamat (sea cucumber extract) (15.0% w/v). No local skin irritation, microbial contamination, and insignificant concentration of heavy metals were observed, which indicate its safe application. Moreover, the aqueous extract of D. claparedii exhibited antibacterial activities against Escherichia coli and Pseudomonas aeruginosa with minimum inhibitory concentration (MIC) value at 0.4 g/ml. 1H NMR analysis of the aqueous extract of D. claparedii revealed some metabolites that might be responsible for its wound healing properties such as amino acids, halogenated aromatics, organic acids, vitamins, and others. Altogether, these results suggested that the aqueous extract of D. claparedii could be utilised as an alternative natural wound healing promoter.

12.
Med Mycol ; 58(5): 617-625, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-31642485

ABSTRACT

Sporothrix schenkii is a dimorphic fungus that causes infections in both humans and animals. We report on 25 S. schenkii isolates collected in 2017 from humans and cats clinically diagnosed with sporotrichosis, in Malaysia. These isolates were phenotypically identified as S. schenkii sensu lato and further defined as S. schenckii sensu stricto based on partial calmodulin gene sequence. Isolates from both humans and cats were genotypically identical but displayed phenotypic variation. Phylogenetic analyses based on partial calmodulin sequence showed that the Malaysian isolates clustered with global S. schenkii sensu stricto strains, in particular, of the AFLP type E. This analysis also revealed that partial calmodulin sequence alone was sufficient for classifying global S. schenckii sensu stricto strains into their respective AFLP types, from A to E. The genetically conserved S. schenkii sensu stricto species isolated from humans and cats is suggestive of a clonal strain present in Malaysia. To the best of our knowledge, this is the first report on molecular identification of Sporothrix schenkii strains from human infections in Malaysia. Further studies are required in order to elucidate the clonal nature of Malaysian S. schenkii isolates. Our findings indicate the presence of a predominant S. schenkii genotype in the environment, causing infections in both cats and humans in Malaysia.


Subject(s)
Cat Diseases/epidemiology , Cat Diseases/microbiology , Sporothrix/classification , Sporothrix/isolation & purification , Sporotrichosis/epidemiology , Sporotrichosis/microbiology , Adolescent , Adult , Aged , Amplified Fragment Length Polymorphism Analysis , Animals , Calmodulin/genetics , Cats , Child , Humans , Malaysia/epidemiology , Middle Aged , Molecular Epidemiology , Phylogeny , Polymerase Chain Reaction , Sporothrix/genetics , Sporotrichosis/veterinary , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...