Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Neuroanat ; 113: 101921, 2021 04.
Article in English | MEDLINE | ID: mdl-33600923

ABSTRACT

Human Wharton's jelly-derived Mesenchymal Stromal Cells (hWJ-MSCs) have shown beneficial effects in improving the dopaminergic cells in the Parkinson's disease (PD). In the present study, the effects of hWJ-MSCs on hyperalgesia, anxiety deficiency and Pallidal local electroencephalogram (EEG) impairment, alone and combined with L-dopa, were examined in a rat model of PD. Adult male Wistar rats were divided into five groups: 1) sham, 2) PD, 3) PD + C (Cell therapy), 4) PD + C+D (Drug), and 5) PD + D. PD was induced by injection of 6-OHDA (16 µg/2 µl into medial forebrain bundle (MFB)). PD + C group received hWJ-MSCs (1 × 106 cells, intravenous (i.v.)) twice post PD induction. PD + C+D groups received hWJ-MSCs combined with L-Dopa/Carbidopa, (10/30 mg/kg, intraperitoneally (i.p.)). PD + D group received L-Dopa/Carbidopa alone. Four months later, analgesia, anxiety-like behaviors, were evaluated and Pallidal local EEG was recorded. Level of insulin-like growth factor 1 (IGF-1) was measured in the striatum and dopaminergic neurons were counted in substantia nigra (SNc). According to data, MFB-lesioned rats showed hyperalgesia in tail flick, anxiety-like symptoms in cognitive tests, impairment of electrical power of pallidal local EEG as field potential, count of dopaminergic neurons in SNc and level of IGF-1 in striatum. These complications restored significantly by MSCs treatment (p < 0.001). Our findings confirm that chronic treatment with hWJ-MSC, alone and in combination with L-Dopa, improved nociception and cognitive deficit in PD rats which may be the result of increasing IGF-1 and protect the viability of dopaminergic neurons.


Subject(s)
Behavior, Animal/physiology , Mesenchymal Stem Cell Transplantation/methods , Nerve Growth Factor/metabolism , Parkinson Disease, Secondary/therapy , Substantia Nigra/metabolism , Wharton Jelly/cytology , Animals , Antiparkinson Agents/therapeutic use , Carbidopa/therapeutic use , Dopaminergic Neurons/metabolism , Drug Combinations , Electroencephalography , Insulin-Like Growth Factor I/metabolism , Levodopa/therapeutic use , Male , Medial Forebrain Bundle/metabolism , Motor Activity/physiology , Oxidopamine , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/drug therapy , Parkinson Disease, Secondary/metabolism , Rats , Rats, Wistar
2.
Iran J Basic Med Sci ; 24(9): 1173-1181, 2021 Sep.
Article in English | MEDLINE | ID: mdl-35083003

ABSTRACT

OBJECTIVES: Human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) have been recognized as a potential tool to replace damaged cells by improving the survival of the dopaminergic cells in Parkinson's disease (PD). In this study, we examined the effects of hWJ-MSCs and associated with L-dopa/carbidopa on motor disturbances in the PD model. MATERIALS AND METHODS: PD was induced by injection of 6-hydroxydopamine (6-OHDA) (16 µg/2 µl into medial forebrain bundle (MFB)). Sham group received a vehicle instead of 6-OHDA. PD+C group received hWJ-MSCs twice on the 14th and 28th days post PD induction. PD+C+D group received hWJ-MSCs and also L-dopa/carbidopa (10/30 mg/kg). PD+D group received L-dopa/carbidopa alone. Four months later, motor activities (the parameters of locomotor and muscle stiffness) were evaluated, dopaminergic neurons were counted in substantia nigra pars compacta (SNc), the level of dopamine (DA), and tyrosine hydroxylase (TH) were measured in the striatum. RESULTS: Data indicated that motor activities, the number of dopaminergic neurons, and levels of DA and TH activities were significantly reduced in PD rats as compared to the sham group (P<0.001). However, the same parameters were improved in the treated groups when compared with the PD group (P<0.001 and P<0.01, respectively). CONCLUSION: The chronic treatment of PD rats with hWJ-MSCs and L-dopa/carbidopa, improved motor activity, which may be the result of increased TH activity and due to released DA from dopaminergic neurons.

3.
J Chem Neuroanat ; 110: 101865, 2020 12.
Article in English | MEDLINE | ID: mdl-32991967

ABSTRACT

BACKGROUND: Experimental findings have shown that stem cell transplantation is a therapeutic procedure for Parkinson's disease (PD). In this study, effects of human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs), alone and combined with l-dopa, were examined for repairing memory impairment in a rat model of PD. METHODS: Fifty adult male Wistar rats were randomly divided into five groups: 1) sham, 2) PD, 3) PD + C, 4) PD + C+D, and 5) PD + D. PD was induced by 6-OHDA injection (16 µg/2 µl) into medial forebrain bundle (MFB) and was confirmed 14 days later by contralateral rotation using apomorphine injection. The rats received hWJ-MSCs (1 × 106 cells, i.v.) twice on the 14th and 28th days post PD induction. Treated PD rats received hWJ-MSCs alone or combined with l-Dopa and Carbidopa (10/30 mg/kg, i.p.). Four months later, memory, hippocampal long-term potentiation (hLTP), histological changes, and the levels of BDNF and NGF in striatum were evaluated. RESULTS: PD caused both cell loss with small dark stained nuclei in granular zone as well as significant decrement of BDNF and NGF (P < 0.001) in striatum. These pathological alterations were associated with memory and hLTP deficits (P < 0.001 respectively). Treating PD rats with hWJ-MSCs, alone (P < 0.05 and P < 0.001) and combined with l-Dopa (P < 0.001), significantly restored the levels of both of the neurotrophins followed by improving cognition and hLTP (P < 0.001). CONCLUSION: Current findings showed that chronic treatment of PD rats with hWJ-MSCs, alone and in combination with l-Dopa, could restore memory and hLTP by reconstructing dopaminergic neurons and elevating the BDNF and NGF factors.


Subject(s)
Hippocampus/physiopathology , Memory/physiology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Parkinson Disease, Secondary/therapy , Wharton Jelly , Animals , Brain-Derived Neurotrophic Factor/metabolism , Corpus Striatum/metabolism , Disease Models, Animal , Long-Term Potentiation/physiology , Male , Nerve Growth Factor/metabolism , Oxidopamine , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/physiopathology , Rats , Rats, Wistar
4.
Iran J Pharm Res ; 16(3): 868-879, 2017.
Article in English | MEDLINE | ID: mdl-29201078

ABSTRACT

Curcumin (Cur) has been found to be very efficacious against many different types of cancer cells. However, the major disadvantage associated with the use of Cur is its low systemic bioavailability. Our present work investigated the toxic effect of encapsulation of Cur in PLGA (poly lactic-coglycolic acid) nanospheres (NCur) on PC3 human cancer prostate cell. In the present study, we have investigated the effects of NCur on growth, autophagia, and apoptosis in PC3 cells, respectively, by MTT assay, fluorescence microscopy, and Flow cytometry. MTT assays revealed that the NCur at the concentration of 25 µg/mL for 48 h were able to exert a more pronounced effect on the PC3 cells as compared to free Cur. Apoptotic index was significantly increased in NCur-treated cells compared to free Cur. The percentage of autophagic cells (LC3-II positive cells) was also significantly increased in NCur treatment in comparison to free Cur. These data indicate that the NCur has considerable cytotoxic activity more than Cur on PC3 cell lines, which is mediated by induction of both apoptotic and autophagic processes. Thus, NCur has high potential as an adjuvant therapy for clinical application in prostate cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...