Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 622-623: 293-305, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29216470

ABSTRACT

Hospital wastewater and effluents from waste stabilization ponds in Kumasi, Ghana, are directly discharged as low quality water into nearby streams which are eventually used to irrigate vegetables. The presence of 12 commonly used antibiotics in Ghana (metronidazole, ciprofloxacin, erythromycin, trimethoprim, ampicillin, cefuroxime, sulfamethoxazole, amoxicillin, tetracycline, oxytetracycline, chlortetracycline and doxycycline) were investigated in water and lettuce samples collected in three different areas in Kumasi, Ghana. The water samples were from hospital wastewater, wastewater stabilization ponds, rivers and irrigation water, while the lettuce samples were from vegetable farms and market vendors. Antibiotics in water samples were extracted using SPE while antibiotics in lettuce samples were extracted using accelerated solvent extraction followed by SPE. All extracted antibiotics samples were analyzed by HPLC-MS/MS. All studied compounds were detected in concentrations significantly higher (p=0.01) in hospital wastewater than in the other water sources. The highest concentration found in the present study was 15µg/L for ciprofloxacin in hospital wastewater. Irrigation water samples analyzed had concentrations of antibiotics up to 0.2µg/L. Wastewater stabilization ponds are low technology but effective means of removing antibiotics with removal efficiency up to 95% recorded in this study. However, some chemicals are still found in levels indicating medium to high risk of antibiotics resistance development in the environment. The total concentrations of antibiotics detected in edible lettuce tissues from vegetable farms and vegetable sellers at the markets were in the range of 12.0-104 and 11.0-41.4ng/kg (fresh weight) respectively. The antibiotics found with high concentrations in all the samples were sulfamethoxazole, erythromycin, ciprofloxacin, cefuroxime and trimethoprim. Furthermore, our study confirms the presence of seven antibiotics in lettuce from irrigation farms and markets, suggesting an indirect exposure of humans to antibiotics through vegetable consumption and drinking water in Ghana. However, estimated daily intake for a standard 60kg woman was 0.3ng/day, indicating low risk for human health.


Subject(s)
Anti-Bacterial Agents/analysis , Food Contamination/analysis , Lactuca/chemistry , Wastewater/analysis , Water Pollutants, Chemical/analysis , Agricultural Irrigation , Ghana , Hospitals , Humans , Risk Assessment , Tandem Mass Spectrometry , Water
2.
Chemosphere ; 157: 107-14, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27213239

ABSTRACT

The capacity of carrot (Daucus corota L.) and lettuce (Lactuca sativa L.), two plants that are usually eaten raw, to uptake tetracycline and amoxicillin (two commonly used antibiotics) from irrigated water was investigated in order to assess the indirect human exposure to antibiotics through consumption of uncooked vegetables. Antibiotics in potted plants that had been irrigated with known concentrations of the antibiotics were extracted using accelerated solvent extraction and analyzed on a liquid chromatograph-tandem mass spectrometer. The plants absorbed the antibiotics from water in all tested concentrations of 0.1-15 mg L(-1). Tetracycline was detected in all plant samples, at concentrations ranging from 4.4 to 28.3 ng/g in lettuce and 12.0-36.8 ng g(-1) fresh weight in carrots. Amoxicillin showed absorption with concentrations ranging from 13.7 ng g(-1) to 45.2 ng g(-1) for the plant samples. The mean concentration of amoxicillin (27.1 ng g(-1)) in all the samples was significantly higher (p = 0.04) than that of tetracycline (20.2 ng g(-1)) indicating higher uptake of amoxicillin than tetracycline. This suggests that the low antibiotic concentrations found in plants could be important for causing antibiotics resistance when these levels are consumed.


Subject(s)
Anti-Bacterial Agents/analysis , Daucus carota/chemistry , Lactuca/chemistry , Soil Pollutants/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Agricultural Irrigation , Anti-Bacterial Agents/metabolism , Daucus carota/growth & development , Daucus carota/metabolism , Dose-Response Relationship, Drug , Humans , Lactuca/growth & development , Lactuca/metabolism , Soil Pollutants/metabolism , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...