Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
4.
Behav Brain Res ; 222(1): 106-16, 2011 Sep 12.
Article in English | MEDLINE | ID: mdl-21419804

ABSTRACT

Despite the evidence that exercise improves cognitive behavior in animal models, little is known about these beneficial effects in animal models of pathology. We examined the effects of activity wheel (AW) running on contextual fear conditioning (CFC) and locomotor/exploratory behavior in the olfactory bulbectomy (OBX) model of depression, which is characterized by hyperactivity and changes in cognitive function. Twenty-four hours after the conditioning session of the CFC protocol, the animals were tested for the conditioned response in a conditioned and a novel context to test for the effects of both AW and OBX on CFC, but also the context specificity of the effect. OBX reduced overall AW running behavior throughout the experiment, but increased locomotor/exploratory behavior during CFC, thus demonstrating a context-dependent effect. OBX animals, however, displayed normal CFC behavior that was context-specific, indicating that aversively conditioned memory is preserved in this model. AW running increased freezing behavior during the testing session of the CFC protocol in the control animals but only in the conditioned context, supporting the hypothesis that AW running improves cognitive function in a context-specific manner that does not generalize to an animal model of pathology. Blood corticosterone levels were increased in all animals at the conclusion of the testing sessions, but levels were higher in AW compared to sedentary groups indicating an effect of exercise on neuroendocrine function. Given the differential results of AW running on behavior and neuroendocrine function after OBX, further exploration of the beneficial effects of exercise in animal models of neuropathology is warranted.


Subject(s)
Cognition/physiology , Depression/rehabilitation , Exploratory Behavior/physiology , Locomotion/physiology , Olfactory Bulb/injuries , Physical Conditioning, Animal/methods , Animals , Body Weight/physiology , Conditioning, Psychological/physiology , Corticosterone/blood , Depression/blood , Depression/physiopathology , Disease Models, Animal , Fear/psychology , Freezing Reaction, Cataleptic/physiology , Male , Olfactory Bulb/physiology , Psychomotor Performance/physiology , Radioimmunoassay/methods , Rats , Rats, Long-Evans , Time Factors
5.
Hypertension ; 57(2): 283-8, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21149828

ABSTRACT

Pregnancy impairs baroreflex gain, but the mechanism is incompletely understood. To test the hypothesis that reductions in brain insulin contribute, we determined whether pregnant rats exhibit lower cerebrospinal fluid (CSF) insulin concentrations and whether intracerebroventricular infusion of insulin normalizes gain of baroreflex control of heart rate in conscious pregnant rats. CSF insulin was lower in pregnant (68 ± 21 pg/mL) compared to virgin (169 ± 25 pg/mL) rats (P < 0.05). Pregnancy reduced baroreflex gain (pregnant 2.4 ± 0.2 bpm/mm Hg, virgin 4.6 ± 0.3 bpm/mm Hg; P < 0.0001) and the maximum heart rate elicited by hypotension (pregnant 455 ± 15 bpm, virgin 507 ± 12 bpm; P = 0.01). Infusion of insulin (100 µU/min) intracerebroventricularly increased baroreflex gain in pregnant (2.4 ± 0.4 to 3.9 ± 0.5 bpm/mm Hg; P < 0.01) but not virgin (4.6 ± 0.4 to 4.2 ± 0.4 bpm/mm Hg; NS) rats. Maximum heart rate was not altered by intracerebroventricular insulin in either group. Interestingly, while in pregnant rats the baroreflex was unchanged by intracerebroventricular infusion of the artificial CSF vehicle, in virgin rats, vehicle infusion lowered baroreflex gain (4.7 ± 0.3 to 3.9 ± 0.3 bpm/mm Hg; P < 0.05) and the maximum baroreflex heart rate (495 ± 19 to 444 ± 21 bpm; P < 0.05). These data support the hypothesis that brain insulin is required to support optimal baroreflex function and that a decrease in brain insulin contributes to the fall in baroreflex gain during pregnancy.


Subject(s)
Baroreflex/physiology , Brain/physiology , Insulin/cerebrospinal fluid , Animals , Baroreflex/drug effects , Blood Pressure/physiology , Brain/metabolism , Consciousness , Female , Heart Rate/physiology , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/cerebrospinal fluid , Infusions, Intraventricular , Insulin/administration & dosage , Male , Pregnancy , Rats , Rats, Sprague-Dawley
6.
Am J Physiol Regul Integr Comp Physiol ; 298(2): R419-26, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19939977

ABSTRACT

Recent studies in rabbits suggest that insulin resistance and reduced brain insulin contribute to impaired baroreflex control of heart rate (HR) during pregnancy; however, the mechanisms are unknown. The rat model is ideal to investigate these mechanisms because much is known about rat brain baroreflex neurocircuitry and insulin receptor locations. However, it is unclear in rats whether pregnancy impairs the HR baroreflex or whether insulin resistance is involved. Therefore, this study tested the hypothesis that in rats pregnancy decreases HR baroreflex sensitivity (BRS) and that this decrease is related to concurrent decreases in insulin sensitivity (IS). BRS was quantified before, during, and after pregnancy using complementary methods: 1) spontaneous BRS (sBRS) derived from sequence method analysis of telemetric, continuous arterial pressure recordings; and 2) maximal BRS of complete sigmoidal baroreflex relationships. IS was measured (hyperinsulinemic euglycemic clamp) to determine whether BRS and IS change in parallel. sBRS was reduced at midgestation [pregnancy day 10 (P10)], returned to nonpregnant (NP) levels on P18, and fell again at late gestation (P20) (sBRS in ms/mmHg: NP, 1.66 + or - 0.04; P10, 1.17 + or - 0.11; P18, 1.55 + or - 0.12; P20, 1.31 + or - 0.05; n = 5; P < 0.05). Similar triphasic patterns were observed for both maximal BRS [in beats x min(-1) x mmHg(-1): NP, 4.45 + or - 0.52 (n = 10); P11-12, 2.76 + or - 0.11 (n = 7); P17-18, 3.79 + or - 0.14 (n = 5); P19-20, 2.32 + or - 0.40 (n = 8); P < 0.0001] and previous and current measurements of IS (in mg glucose x kg(-1) x min(-1): NP, 32 + or - 2; P19-20, 15 + or - 1; P < 0.0005). Furthermore, during pregnancy, the standard deviation (SD) of MAP increased, and the SD of HR decreased, indirectly suggesting baroreflex impairment. sBRS increased transiently during parturition, and sBRS, maximal BRS, and IS normalized 3-4 days postpartum. In conclusion, pregnancy decreases HR BRS in rats. The parallel temporal changes in BRS and IS suggest a mechanistic link.


Subject(s)
Baroreflex/physiology , Heart Rate/physiology , Insulin Resistance/physiology , Insulin/physiology , Pregnancy, Animal/physiology , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Circadian Rhythm/physiology , Female , Glucose Clamp Technique , Oxytocin/pharmacology , Postpartum Period/physiology , Pregnancy , Rats , Rats, Sprague-Dawley , Telemetry
7.
Am J Physiol Regul Integr Comp Physiol ; 296(5): R1419-26, 2009 May.
Article in English | MEDLINE | ID: mdl-19261912

ABSTRACT

Baroreflex sensitivity (BRS) increases in women during the luteal phase of the menstrual cycle, when gonadal hormones are elevated, but whether a similar cycle-dependent variation in BRS occurs in rats is unknown. In addition, whether cyclic BRS changes depend on gonadal steroids has not been previously investigated. To test these hypotheses, BRS was determined in cycling female rats using two approaches: 1) baroreflex control of renal sympathetic nerve activity (RSNA) in anesthetized rats; 2) cardiovagal spontaneous BRS (sBRS) in conscious rats instrumented for continuous telemetric measurements of mean arterial pressure (MAP) and heart rate (HR). MAP, HR, and sBRS were also measured in rats 2-3 and 5-6 wk following ovariectomy (OVX), to eliminate gonadal steroids. In anesthetized rats, RSNA BRS gain was increased (P < 0.01) during proestrus (-4.8+/-0.5% control/mmHg) compared with diestrus/estrus (-2.8 +/- 0.3% control/mmHg). Similarly, a proestrous peak in sBRS was observed in conscious rats (1.66 +/- 0.07 ms/mmHg, proestrus; 1.48 +/- 0.06 ms/mmHg, diestrus/estrus; P < 0.001). OVX eliminated estrous cycle-induced variation in sBRS. In addition, OVX reduced (P < 0.05) diurnal variations in MAP (5.9 +/- 0.3 vs. 3.9 +/- 0.5 mmHg) and HR [54 +/- 4 vs. 39 +/- 3 beats per minute (bpm)], and abolished diurnal variations in sBRS. Finally, while MAP, HR, and sBRS were decreased 2-3 wk following OVX, approximately 3 wk later, MAP and sBRS increased, and HR decreased further. No changes in MAP, HR, or sBRS were seen with time in sham OVX controls. In summary, RSNA and cardiovagal sBRS vary during the rat estrous cycle, and this variation is abolished by OVX. We conclude that sex steroid hormones are required for both cyclic and diurnal changes in BRS in rats.


Subject(s)
Baroreflex/physiology , Estrous Cycle/physiology , Gonadal Steroid Hormones/physiology , Sympathetic Nervous System/physiology , Animals , Blood Pressure/physiology , Estradiol/blood , Female , Heart Rate/physiology , Models, Animal , Organ Size , Ovariectomy , Ovary/anatomy & histology , Rats , Rats, Sprague-Dawley , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...