Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 11749, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38782985

ABSTRACT

Tertiary lymphoid structures (TLS) are lymphoid organs present in inflammatory non-lymphoid tissues. Studies have linked TLS to favorable outcomes for patients with cancers or infectious diseases, but the mechanisms underlying their formation are not fully understood. In particular, secondary lymphoid organs innervation raises the question of sympathetic nerve fibers involvement in TLS organogenesis. We established a model of pulmonary inflammation based on 5 daily intranasal instillations of lipopolysaccharide (LPS) in immunocompetent mice. In this setting, lung lymphoid aggregates formed transiently, evolving toward mature TLS and disappearing when inflammation resolved. Sympathetic nerve fibers were then depleted using 6-hydroxydopamine. TLS quantification by immunohistochemistry showed a decrease in LPS-induced TLS number and surface in denervated mouse lungs. Although a reduction in alveolar space was observed, it did not impair overall pulmonary content of transcripts encoding TNF-α, IL-1ß and IFN-γ inflammation molecules whose expression was induced by LPS instillations. Immunofluorescence analysis of immune infiltrates in lungs of LPS-treated mice showed a drop in the proportion of CD23+ naive cells among CD19+ B220+ B cells in denervated mice whereas the proportion of other cell subsets remained unchanged. These data support the existence of neuroimmune crosstalk impacting lung TLS neogenesis and local naive B cell pool.


Subject(s)
Lipopolysaccharides , Lung , Pneumonia , Sympathetic Nervous System , Tertiary Lymphoid Structures , Animals , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/pathology , Mice , Pneumonia/pathology , Pneumonia/metabolism , Pneumonia/immunology , Lung/innervation , Lung/pathology , Lung/immunology , Mice, Inbred C57BL , Disease Models, Animal , B-Lymphocytes/immunology , Male
2.
Cancers (Basel) ; 13(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925547

ABSTRACT

Diffuse grade II IDH-mutant gliomas are slow-growing brain tumors that progress into high-grade gliomas. They present intratumoral cell heterogeneity, and no reliable markers are available to distinguish the different cell subtypes. The molecular mechanisms underlying the formation of this cell diversity is also ill-defined. Here, we report that SOX9 and OLIG1 transcription factors, which specifically label astrocytes and oligodendrocytes in the normal brain, revealed the presence of two largely nonoverlapping tumoral populations in IDH1-mutant oligodendrogliomas and astrocytomas. Astrocyte-like SOX9+ cells additionally stained for APOE, CRYAB, ID4, KCNN3, while oligodendrocyte-like OLIG1+ cells stained for ASCL1, EGFR, IDH1, PDGFRA, PTPRZ1, SOX4, and SOX8. GPR17, an oligodendrocytic marker, was expressed by both cells. These two subpopulations appear to have distinct BMP, NOTCH1, and MAPK active pathways as stainings for BMP4, HEY1, HEY2, p-SMAD1/5 and p-ERK were higher in SOX9+ cells. We used primary cultures and a new cell line to explore the influence of NOTCH1 activation and BMP treatment on the IDH1-mutant glioma cell phenotype. This revealed that NOTCH1 globally reduced oligodendrocytic markers and IDH1 expression while upregulating APOE, CRYAB, HEY1/2, and an electrophysiologically-active Ca2+-activated apamin-sensitive K+ channel (KCNN3/SK3). This was accompanied by a reduction in proliferation. Similar effects of NOTCH1 activation were observed in nontumoral human oligodendrocytic cells, which additionally induced strong SOX9 expression. BMP treatment reduced OLIG1/2 expression and strongly upregulated CRYAB and NOGGIN, a negative regulator of BMP. The presence of astrocyte-like SOX9+ and oligodendrocyte-like OLIG1+ cells in grade II IDH1-mutant gliomas raises new questions about their role in the pathology.

3.
Stem Cell Reports ; 12(5): 1159-1177, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31031189

ABSTRACT

Anamniotes, rodents, and young humans maintain neural stem cells in the ependymal zone (EZ) around the central canal of the spinal cord, representing a possible endogenous source for repair in mammalian lesions. Cell diversity and genes specific for this region are ill defined. A cellular and molecular resource is provided here for the mouse and human EZ based on RNA profiling, immunostaining, and fluorescent transgenic mice. This uncovered the conserved expression of 1,200 genes including 120 transcription factors. Unexpectedly the EZ maintains an embryonic-like dorsal-ventral pattern of expression of spinal cord developmental transcription factors (ARX, FOXA2, MSX1, and PAX6). In mice, dorsal and ventral EZ cells express Vegfr3 and are derived from the embryonic roof and floor plates. The dorsal EZ expresses a high level of Bmp6 and Gdf10 genes and harbors a subpopulation of radial quiescent cells expressing MSX1 and ID4 transcription factors.


Subject(s)
Embryonic Stem Cells/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , RNA/genetics , Spinal Cord/metabolism , Stem Cells/metabolism , Animals , Embryonic Stem Cells/cytology , Ependymoglial Cells/cytology , Ependymoglial Cells/metabolism , Female , Humans , MSX1 Transcription Factor/genetics , MSX1 Transcription Factor/metabolism , Male , Mice , Mice, Transgenic , Microscopy, Fluorescence , Middle Aged , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , RNA/metabolism , Spinal Cord/cytology , Stem Cell Niche , Stem Cells/cytology , Young Adult
4.
Methods Mol Biol ; 1598: 45-63, 2017.
Article in English | MEDLINE | ID: mdl-28508357

ABSTRACT

Traumatic brain injury (TBI) is an injury to the brain caused by an external mechanical force, affecting millions of people worldwide. The disease course and prognosis are often unpredictable, and it can be challenging to determine an early diagnosis in case of mild injury as well as to accurately phenotype the injury. There is currently no cure for TBI-drugs having failed repeatedly in clinical trials-but an intense effort has been put to identify effective neuroprotective treatment. The detection of novel biomarkers, to understand more of the disease mechanism, facilitates early diagnosis, predicts disease progression, and develops molecularly targeted therapies that would be of high clinical interest. Over the last decade, there has been an increasing effort and initiative toward finding TBI-specific biomarker candidates. One promising strategy has been to use state-of-the-art neuroproteomics approaches to assess clinical biofluids and compare the cerebrospinal fluid (CSF) and blood proteome between TBI and control patients or between different subgroups of TBI. In this chapter, we summarize and discuss the status of biofluid proteomics in TBI, with a particular focus on the latest findings.


Subject(s)
Biomarkers , Brain Injuries/metabolism , Proteome , Proteomics/methods , Animals , Brain Injuries/diagnosis , Brain Injuries/etiology , Brain Injuries/mortality , Humans , Research
5.
Vet Res Forum ; 3(1): 5-11, 2012.
Article in English | MEDLINE | ID: mdl-25653739

ABSTRACT

The effect of inclusion of garlic essential oil (EO) at 33, 66 and 100 µg mL(-1), raw garlic (GAR) at 5, 10 and 15 mg mL(-1) and monensin (MON) at 7.5 µg mL(-1) of incubation medium on organic matter digestibility (OMD) was studied with in vitro gas production, ANKOM daisy(II) and conventional in vitro (IVOMD) methods. The material was incubated with sheep ruminal fluid and the experimental design was a completely randomized design. Cumulative gas production was recorded at 0, 2, 4, 6, 8, 12, 16, 24, 36, 48, 72 and 96 hours of incubation. Conventional in vitro OMD was determined after 48 hours incubation in acid and pepsin solutions. Samples for Daisy(II) OMD prepared according to the operating instructions supplied by ANKOM(®) Tech. Co., Fairport, USA. Compared to in vitro dry matter digestibility (IVDMD), Daisy(II) and gas production techniques overestimated (P < 0.05) OMD. The addition of EO and MON reduced (P < 0.05) the organic matter (OM), neutral detergent fiber (NDF), acid-detergent fiber (ADF) digestion, and gas production volume. The potential of gas production and rate of gas production for EO and MON were the lowest; however, these variables were higher for GAR supplemented groups. It was concluded that raw garlic could be of great interest for its usage as a modulator of ruminal fermentation.

SELECTION OF CITATIONS
SEARCH DETAIL
...