Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Calcif Tissue Int ; 115(1): 78-84, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38753025

ABSTRACT

Subchondral bone remodeling, mediated by osteocytes within the lacuno-canalicular network, plays a crucial role in osteoarthritis (OA) progression. Following cell death, lacunae preserve integrity, offering insights into bone remodeling mechanisms. Limited and controversial data on osteocyte lacuna morphology in OA result from small sample sizes and two-dimensional (2D) techniques that have been used thus far. This study aimed to quantify three-dimensional (3D) osteocyte lacunar characteristics at well-defined tibial plateau locations, known to be differently affected by OA. Specifically, 11 tibial plateaus were obtained from end-stage knee-OA patients with varus deformity. Each plateau provided one sample from the less affected lateral compartment and two samples from the medial compartment, at minimum and maximum bone volume fraction (BV/TV) locations. High-resolution desktop micro-computed tomography (micro-CT) at 0.7 µm voxel resolution imaged the 33 samples. Lacuna number density (Lc.N/BV) and lacuna volume density (Lc.TV/BV) were significantly lower (p < 0.02) in samples from the medial side with maximum BV/TV compared to lateral side samples. In the medial compartment at maximum local BV/TV, mean lacuna volume (Lc.V), total lacuna volume (Lc.TV), and Lc.TV/BV were significantly (p < 0.001) lower than in the region with minimum BV/TV. Lc.N/BV was also significantly lower (p < 0.02) at the maximum local BV/TV location compared to the region with minimum BV/TV. Our findings suggest that subchondral bone lacunae adapt to the changing loads in end-stage OA.


Subject(s)
Bone Remodeling , Osteoarthritis, Knee , Osteocytes , Tibia , X-Ray Microtomography , Humans , Osteocytes/pathology , Tibia/pathology , Tibia/diagnostic imaging , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/diagnostic imaging , Male , Aged , Female , Middle Aged , X-Ray Microtomography/methods , Bone Remodeling/physiology
2.
JBMR Plus ; 8(4): ziae014, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38533245

ABSTRACT

Knee osteoarthritis is a whole joint disease highlighting the coupling of cartilage and bone adaptations. However, the structural properties of the subchondral bone plate (SBP) and underlying subchondral trabecular bone (STB) in the femoral compartment have received less attention compared to the tibial side. Furthermore, how the properties in the femoral compartment relate to those in the corresponding tibial site is unknown. Therefore, this study aimed to quantify the structural bone and cartilage morphology in the femoral compartment and investigate its association with those of the tibial plateau. Specifically, tibial plateaus and femoral condyles were retrieved from 28 patients with end-stage knee-osteoarthritis (OA) and varus deformity. The medial condyle of tibial plateaus and the distal part of the medial femoral condyles were micro-CT scanned (20.1 µm/voxel). Cartilage thickness (Cart.Th), SBP, and STB microarchitecture were quantified. Significant (P < <.001; 0.79 ≤ r ≤ 0.97) correlations with a relative difference within 10% were found between the medial side of the femoral and tibial compartments. The highest correlations were found for SBP porosity (r = 0.97, mean absolute difference of 0.50%, and mean relative difference of 9.41%) and Cart.Th (r = 0.96, mean absolute difference of 0.18 mm, and relative difference of 7.08%). The lowest correlation was found for trabecular thickness (r = 0.79, mean absolute difference of 21.07 µm, and mean relative difference of 5.17%) and trabecular number (r = 0.79, mean absolute difference of 0.18 mm-1, and relative difference of 5.02%). These findings suggest that the distal femur is affected by OA in a similar way as the proximal tibia. Given that bone adaptation is a response to local mechanical forces, our results suggest that varus deformity similarly affects the stress distribution of the medial tibial plateau and the medial distal femur.

3.
Bone ; 181: 117027, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38309413

ABSTRACT

Visualization and quantification of bone microarchitecture in the human knee allows gaining insight into normal bone structure, and into the structural changes occurring in the onset and progression of bone diseases such as osteoporosis and osteoarthritis. However, current imaging modalities have limitations in capturing the intricacies of bone microarchitecture. Photon counting computed tomography (PCCT) is a promising imaging modality that presents high-resolution three-dimensional visualization of bone with a large field of view. However, the potential of PCCT in assessing trabecular microstructure has not been investigated yet. Therefore, this study aimed to evaluate the accuracy of PCCT in quantifying bone microstructure and bone mechanics in the knee. Five human cadaveric knees were scanned ex vivo using a PCCT scanner (Naetom alpha, Siemens, Germany) with an in-plane resolution of 146.5 µm and slice thickness of 100 µm. To assess accuracy, the specimens were also scanned with a high-resolution peripheral quantitative computed tomography (HR-pQCT; XtremeCT II, Scanco Medical, Switzerland) with a nominal isotropic voxel size of 60.7 µm as well as with micro-computed tomography (micro-CT; TESCAN UniTOM XL, Czech Republic) with a nominal isotropic voxel size of 25 µm which can be considered gold standards for in vivo and ex vivo scanning, respectively. The thickness and porosity of the subchondral bone and the microstructure of the underlying trabecular bone were assessed in the load bearing regions of the proximal tibia and distal femur. The apparent Young's modulus was determined by micro-finite element (µFE) analysis of subchondral trabecular bone (STB) in the load bearing regions of the proximal tibia using PCCT, HR-pQCT and micro-CT images. The correlation between PCCT measurements and micro-CT and HR-pQCT, respectively, was calculated. The coefficients of determination (R2) between PCCT and micro-CT based parameters, ranged from 0.69 to 0.87. The coefficients of determination between PCCT and HR-pQCT were slightly higher and ranged from 0.71 to 0.91. Apparent Young's modulus, assessed by µFE analysis of PCCT images, correlated well with that of micro-CT (R2 = 0.80, mean relative difference = 19 %). However, PCCT overestimated the apparent Young's modulus by 47 %, but the correlation (R2 = 0.84) remained strong when compared to HR-pQCT. The results of this study suggest that PCCT can be used to quantify bone microstructure in the knee.


Subject(s)
Bone and Bones , Osteoporosis , Humans , X-Ray Microtomography/methods , Bone and Bones/diagnostic imaging , Tibia/diagnostic imaging , Knee Joint/diagnostic imaging , Bone Density
4.
J Orthop Res ; 39(8): 1681-1690, 2021 08.
Article in English | MEDLINE | ID: mdl-33095461

ABSTRACT

Short stems are becoming increasingly popular in total hip arthroplasty as they preserve the bone stock and simplify the implantation process. Short stems are advised mainly for patients with good bone stock. The clinical use of short stems could be enlarged to patients with poor bone stock if a cemented alternative would be available. Therefore, this study aimed to quantify the mechanical performance of a cemented short stem and to compare the "undersized" cementing strategy (stem one size smaller than the rasp) with the "line-to-line" technique (stem and rasp with identical size). A prototype cemented short stem was implanted in eight pairs of human cadaveric femora using the two cementing strategies. Four pairs were experimentally tested in a single-legged stance condition; stiffness, strength, and bone surface displacements were measured. Subject-specific nonlinear finite element models of all the implanted femora were developed, validated against the experimental data, and used to evaluate the behavior of cemented short stems under physiological loading conditions resembling level walking. The two cementing techniques resulted in nonsignificant differences in stiffness and strength. Strength and stiffness as calculated from finite element were 8.7 ± 16% and 9.9 ± 15.0% higher than experimentally measured. Displacements as calculated from finite element analyses corresponded strongly (R 2 ≥ .97) with those measured by digital image correlation. Stresses during level walking were far below the fatigue limit for bone and bone cement. The present study suggests that cemented short stems are a promising solution in osteoporotic bone, and that the line-to-line and undersized cementing techniques provide similar outcomes.


Subject(s)
Arthroplasty, Replacement, Hip , Arthroplasty, Replacement, Hip/adverse effects , Bone Cements , Femur/surgery , Finite Element Analysis , Humans , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...