Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 15(4)2024 04 09.
Article in English | MEDLINE | ID: mdl-38674408

ABSTRACT

Colorectal cancer (CRC) imposes a significant healthcare burden globally, prompting the quest for innovative biomarkers to enhance diagnostic and therapeutic strategies. This study investigates the G-protein signaling modulator (GPSM) family across several cancers and presents a comprehensive pan-cancer analysis of the GPSM2 gene across several gastrointestinal (GI) cancers. Leveraging bioinformatics methodologies, we investigated GPSM2 expression patterns, protein interactions, functional enrichments, prognostic implications, genetic alterations, and immune infiltration associations. Furthermore, the expression of the GPSM2 gene was analyzed using real-time analysis. Our findings reveal a consistent upregulation of GPSM2 expression in all GI cancer datasets analyzed, suggesting its potential as a universal biomarker in GI cancers. Functional enrichment analysis underscores the involvement of GPSM2 in vital pathways, indicating its role in tumor progression. The prognostic assessment indicates that elevated GPSM2 expression correlates with adverse overall and disease-free survival outcomes across multiple GI cancer types. Genetic alteration analysis highlights the prevalence of mutations, particularly missense mutations, in GPSM2. Furthermore, significant correlations between GPSM2 expression and immune cell infiltration are observed, suggesting its involvement in tumor immune evasion mechanisms. Collectively, our study underscores the multifaceted role of GPSM2 in GI cancers, particularly in CRC, emphasizing its potential as a promising biomarker for prognosis and therapeutic targeting. Further functional investigations are warranted to elucidate its clinical utility and therapeutic implications in CRC management.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Humans , Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Computational Biology/methods , Gene Expression Profiling/methods , Prognosis , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism
2.
Curr Mol Med ; 23(7): 589-605, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37282586

ABSTRACT

As a transcriptional regulation element, the microRNA plays a crucial role in many aspects of molecular biological processes, like cellular metabolism, cell division, cell death, cell movement, intracellular signaling, and immunity. Previous studies suggested that microRNA-214 (miR-214) is probably a valuable cancer marker. In this study, a brief updated overview of the vital dual role of miR-214 in cancer as a tumor suppressor or oncogene was provided. We also examined target genes and signaling pathways related to the dysregulation of miR-214 reported in previous experimental research on various human diseases. To highlight the critical function of miR-214 in the prognostic, diagnostic, and pathogenesis of cancer diseases, we focused on the probable clinical biomarker and drug resistance function of miR-214. The current research provides a comprehensive perspective of the regulatory mechanisms governed by miR-214 in human disease pathogenesis and a list of probable candidates for future study.


Subject(s)
MicroRNAs , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Genes, Tumor Suppressor , Signal Transduction/genetics , Gene Expression Regulation, Neoplastic
3.
Sci Rep ; 13(1): 6147, 2023 04 15.
Article in English | MEDLINE | ID: mdl-37061507

ABSTRACT

Gastric cancer is the high mortality rate cancers globally, and the current survival rate is 30% even with the use of combination therapies. Recently, mounting evidence indicates the potential role of miRNAs in the diagnosis and assessing the prognosis of cancers. In the state-of-art research in cancer, machine-learning (ML) has gained increasing attention to find clinically useful biomarkers. The present study aimed to identify potential diagnostic and prognostic miRNAs in GC with the application of ML. Using the TCGA database and ML algorithms such as Support Vector Machine (SVM), Random Forest, k-NN, etc., a panel of 29 was obtained. Among the ML algorithms, SVM was chosen (AUC:88.5%, Accuracy:93% in GC). To find common molecular mechanisms of the miRNAs, their common gene targets were predicted using online databases such as miRWalk, miRDB, and Targetscan. Functional and enrichment analyzes were performed using Gene Ontology (GO) and Kyoto Database of Genes and Genomes (KEGG), as well as identification of protein-protein interactions (PPI) using the STRING database. Pathway analysis of the target genes revealed the involvement of several cancer-related pathways including miRNA mediated inhibition of translation, regulation of gene expression by genetic imprinting, and the Wnt signaling pathway. Survival and ROC curve analysis showed that the expression levels of hsa-miR-21, hsa-miR-133a, hsa-miR-146b, and hsa-miR-29c were associated with higher mortality and potentially earlier detection of GC patients. A panel of dysregulated miRNAs that may serve as reliable biomarkers for gastric cancer were identified using machine learning, which represents a powerful tool in biomarker identification.


Subject(s)
MicroRNAs , Stomach Neoplasms , Humans , Stomach Neoplasms/diagnosis , Stomach Neoplasms/genetics , Gene Expression Profiling , Early Detection of Cancer , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers, Tumor/genetics , Algorithms
4.
J Cell Mol Med ; 26(8): 2351-2362, 2022 04.
Article in English | MEDLINE | ID: mdl-35266286

ABSTRACT

Differentiation of CD4+ T cells into Th17 cells is an important factor in the onset and progression of multiple sclerosis (MS) and Th17/Treg imbalance. Little is known about the role of lncRNAs in the differentiation of CD4+ cells from Th17 cells. This study aimed to analyse the lncRNA-miRNAs network involved in MS disease and its role in the differentiation of Th17 cells. The lncRNAs in Th17 differentiation were obtained from GSE66261 using the GEO datasets. Differential expression of lncRNAs in Th17 primary cells compared to Th17 effector cells was investigated by RNA-seq analysis. Next, the most highlighted lncRNAs in autoimmune diseases were downloaded from the lncRNAs disease database, and the most critical miRNA was extracted by literature search. Then, the lncRNA-miRNA interaction was achieved by the Starbase database, and the ceRNA network was designed by Cytoscape. Finally, using the CytoHubba application, two hub lncRNAs with the most interactions with miRNAs were identified by the MCODE plug-in. The expression level of genes was measured by qPCR, and the plasma level of cytokines was analysed by ELISA kits. The results showed an increase in the expression of NEAT1, KCNQ1OT1 and RORC and a decrease in the expression of FOXP3. In plasma, an upregulation of IL17 and a downregulation of TGFB inflammatory cytokines were detected. The dysregulated expression of these genes could be attributed to relapsing-remitting MS (RR-MS) patients and help us understand MS pathogenesis better.


Subject(s)
MicroRNAs , Multiple Sclerosis , RNA, Long Noncoding/genetics , Biomarkers , Cell Line , Cytokines/genetics , Gene Regulatory Networks , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Multiple Sclerosis/genetics , Potassium Channels, Voltage-Gated/genetics , RNA, Long Noncoding/metabolism , Th17 Cells/metabolism
5.
Epigenomics ; 13(22): 1797-1815, 2021 11.
Article in English | MEDLINE | ID: mdl-34726075

ABSTRACT

Aim: The exact epigenetic mechanisms that determine the balance of T helper (Th)1 and Th2 cells and autoimmune responses in multiple sclerosis (MS) remain unclear. We aim to clarify these. Methods: A combination of bioinformatics analysis and molecular evaluations was utilized to identify master hub genes. Results: A competitive endogenous RNA network containing six long noncoding RNAs (lncRNAs), 21 miRNAs and 86 mRNAs was provided through enrichment analysis and a protein-protein interaction network. NEAT1 and MALAT1 were found as differentially expressed lncRNAs using Gene Expression Omnibus (GSE21942). Quantitative real-time PCR results demonstrate dysregulation in the RUNX3 (a regulator of Th1/Th2 balance), GATA3 and TBX21, as well as miR-544a and miR-210-3p (which directly target RUNX3). ELISA also confirmed an imbalance in IFN-γ (Th1)/IL-4 (Th2) in MS patients. Conclusion: Our findings introduce novel biomarkers leading to Th1/Th2 imbalance in MS.


Lay abstract Studies have shown that irregular control of noncoding RNAs (ncRNAs) in immune responses can lead to multiple sclerosis. T helper (Th)1 and Th2 cells balance plays an important role in regulating inflammation in this disease. In this study, to investigate the molecular factors that may disrupt this balance, we investigated the role of ncRNAs. Our results suggest that miR-210-3p and miR-544a irregularities can disrupt the Th1/Th2 balances through targeting the RUNX3 gene, which consequently leads to IFNγ/IL4 imbalance. It is also clarified that NEAT1 and MALAT1 long noncoding RNAs also have a role in this imbalance exerting their effect through miR-210-3p and miR-544a. This molecular pathway may provide significant information on multiple sclerosis disease development.


Subject(s)
MicroRNAs , Multiple Sclerosis , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Multiple Sclerosis/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Th1-Th2 Balance
6.
J Cell Mol Med ; 25(16): 7825-7839, 2021 08.
Article in English | MEDLINE | ID: mdl-34159729

ABSTRACT

The new coronavirus pandemic started in China in 2019. The intensity of the disease can range from mild to severe, leading to death in many cases. Despite extensive research in this area, the exact molecular nature of virus is not fully recognized; however, according to pieces of evidence, one of the mechanisms of virus pathogenesis is through the function of viral miRNAs. So, we hypothesized that SARS-CoV-2 pathogenesis may be due to targeting important genes in the host with its miRNAs, which involved in the respiratory system, immune pathways and vitamin D pathways, thus possibly contributing to disease progression and virus survival. Potential miRNA precursors and mature miRNA were predicted and confirmed based on the virus genome. The next step was to predict and identify their target genes and perform functional enrichment analysis to recognize the biological processes connected with these genes in the three pathways mentioned above through several comprehensive databases. Finally, cis-acting regulatory elements in 5' regulatory regions were analysed, and the analysis of available RNAseq data determined the expression level of genes. We revealed that thirty-nine mature miRNAs could theoretically derive from the SARS-CoV-2 genome. Functional enrichment analysis elucidated three highlighted pathways involved in SARS-CoV-2 pathogenesis: vitamin D, immune system and respiratory system. Our finding highlighted genes' involvement in three crucial molecular pathways and may help develop new therapeutic targets related to SARS-CoV-2.


Subject(s)
COVID-19/immunology , Host-Pathogen Interactions/physiology , MicroRNAs , SARS-CoV-2/genetics , Vitamin D/metabolism , COVID-19/genetics , COVID-19/virology , Gene Expression Regulation , Humans , Immune System/virology , Molecular Sequence Annotation , Promoter Regions, Genetic , RNA, Viral , Respiratory System/virology , SARS-CoV-2/pathogenicity
7.
J Cell Physiol ; 236(2): 771-790, 2021 02.
Article in English | MEDLINE | ID: mdl-32697389

ABSTRACT

CircRNAs are a superabundant and highly conserved group of noncoding RNAs (ncRNAs) that are characterized by their high stability and integrity compared with linear forms of ncRNAs. Recently, their critical role in gene expression regulation has been shown; thus, it is not far-fetched to believe that their abnormal expression can be a cause of different kinds of diseases such as cancer, neurodegenerative, and autoimmune diseases. They can have a function in variety of biological processes such as microRNA (miRNA) sponging, interacting with RNA-binding proteins, or even an ability to translate to proteins. A huge challenge in finding diagnostic biomarkers is finding noninvasive biomarkers that can be detected in human fluids, especially blood samples. CircRNAs are becoming candidate biomarkers for diagnosis and prognosis of these diseases through their ability to transverse from the blood-brain barrier and their broad presence in circulating exosomes. The circRNA for miRNA-7 (ciRS-7) is newly recognized, and acknowledged to being related to human pathology and cancer progression. In this review, we first briefly summarize the latest studies about their characteristics, biogenesis, and their mechanisms of action in the regulation and development of human diseases. Finally, we provide a list of diseases that are linked to one member of this novel class of ncRNAs called ciRS-7.


Subject(s)
Neoplasms/genetics , RNA, Long Noncoding/genetics , Animals , Biomarkers, Tumor/genetics , Exosomes/genetics , Humans , Neoplasms/pathology , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...