Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Plant Genomics ; 2017: 5636314, 2017.
Article in English | MEDLINE | ID: mdl-28512468

ABSTRACT

A rampant highly heterozygous aspen (Populus tremula L.) clone "Meshabash" has been revealed in course of population genetic diversity analysis in a native stand in the Republic of Tatarstan, Russia. Here we report the results of karyological analysis showing that this highly vigorous clone is diploid (2n = 38) while typically triploid aspen demonstrates increased growth rate and resistance to aspen trunk rot caused by fungus Phellinus tremulae. By means of DNA identification of a series of model trees using 14 SSR loci we outlined the area occupied by this clone (at least 1.94 ha) and demonstrated that its ramets constitute 40 out of 48 genotyped trunks on the plot with the maximal distance between ramets 254 m. Since aspen is able to regenerate after cutting or die-off of maternal tree by root suckers at a distance up to 20-35 m this assumed that current stand appeared as a result of such spreading from an ortet tree during at least 5 generations. Trunk rot damage in the wood of model trees indicated low influence of this pathogen on viability and performance of the studied clone that can be associated with its extreme heterozygosity level (0.926) exceeding all the studied trees in this research plot and in three other control samples.

2.
Int J Plant Genomics ; 2015: 261518, 2015.
Article in English | MEDLINE | ID: mdl-26823661

ABSTRACT

Testing systems for molecular identification of micropropagated elite aspen (Populus tremula L.) genotypes were developed on the base on microsatellite (SSR) loci. Out of 33 tested microsatellite loci, 14 were selected due to sustainable PCR amplification and substantial variability in elite clones of aspen aimed for establishment of fast-rotated forest plantations. All eight tested clones had different multilocus genotypes. Among 114 trees from three reference native stands located near the established plantations, 80 haplotypes were identified while some repeated genotypes were attributed to natural clones which appeared as a result of sprouting. The selected set of SSR markers showed reliable individual identification with low probability of appearance of identical aspen genotypes (a minimum of 4.8 · 10(-10) and 1 × 10(-4) for unrelated and related individuals, resp.). Case studies demonstrating practical applications of the test system are described including analysis of clonal structure and levels of genetic diversity in three natural aspen stands growing in the regions where plantations made of elite clones were established.

SELECTION OF CITATIONS
SEARCH DETAIL
...