Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 10(2)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33579034

ABSTRACT

This study was designed to the optimize vitrification and in-straw warming protocol of in vitro-produced bovine embryos by comparing two different equilibration periods, short equilibrium (SE: 3 min) and long equilibrium (LE: 12 min). Outcomes recorded in vitrified day seven (D7) and day eight (D8) expanded blastocysts were survival and hatching rates, cell counts, apoptosis rate, and gene expression. While survival rates at 3 and 24 h post-warming were reduced (p < 0.05) after vitrification, the hatching rates of D7 embryos vitrified after SE were similar to the rates recorded in fresh non-vitrified blastocysts. The hatching rates of vitrified D8 blastocysts were lower (p < 0.05) than of fresh controls regardless of treatment. Total cell count, and inner cell mass and trophectoderm cell counts were similar in hatched D7 blastocysts vitrified after SE and fresh blastocysts, while vitrified D8 blastocysts yielded lower values regardless of treatment. The apoptosis rate was significantly higher in both treatment groups compared to fresh controls, although rates were lower for SE than LE. No differences emerged in BAX, AQP3, CX43, and IFNτ gene expression between the treatments, whereas a significantly greater abundance of BCL2L1 and SOD1 transcripts was observed in blastocysts vitrified after SE. A shorter equilibration vitrification protocol was found to improve post-warming outcomes and time efficiency after in-straw warming/dilution.

2.
Polymers (Basel) ; 10(7)2018 Jun 26.
Article in English | MEDLINE | ID: mdl-30960631

ABSTRACT

The present paper reports on the development of a biodegradable overmolded orthopedic implant: a metal bone fixing screw, which has been overmolded with a functionalized thin layer of biodegradable polymer to enhance cell adhesion during the healing process. The main challenges were to integrate precise, high-throughput and repeatable solutions to achieve a thin, defect-free structured polymer layer and to ensure a high and consistent implant quality. The work carried out entailed determining proper materials (Purasorb PDLG 5010) for the biodegradable overmolding layer and its economical substitute (NaKu PLA 100HF) to be used during initial tool and process development, designing the surface structure of the overmolded polymer layer, development of injection molding tools, as well as feeding and handling procedures. The injection overmolding process of Purasorb PDLG 5010 polymer was controlled, and the process parameters were optimized. In particular, the dominant process parameters for the overmolding, namely injection pressure, barrel temperature and mold temperature, were experimentally examined using a circumscribed three-factor central composite design and two quality marks; overmolding roughness and mass of polymer. The analysis of the experimental results shows that the mass of the overmolding is not feasible for use as the quality mark. However, the optimal parameters for the overmolding of a metallic implant screw with a thin, micro-structured polymer layer with a predefined roughness of the surface texture have been identified successfully.

SELECTION OF CITATIONS
SEARCH DETAIL
...