Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(14): 12886-12898, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37065042

ABSTRACT

Losses from corrosion contribute roughly 3-5% of the gross domestic product of developed nations, and among the many methods used to avoid corrosion, using silane-based coatings is seen to be of the biggest importance due to their low toxicity and superior adhesive qualities. It is essential to develop an anti-corrosion coating that is efficient, economical, and eco-friendly. The corrosion resistance and durability of various silane-based coatings such as 1,2-bis(triethoxysilyl)ethane (BTSE), bis[3-(triethoxysilyl)propyl]tetrasulfide (TESPT), and vinyltrimethylsilane (VTES) for carbon steel 1018 substrates were investigated in a high-salinity environment (4.5 wt % NaCl). The corrosion resistance performance was evaluated via potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques. Results revealed that the TESPT film (pH ≈ 7) has the best corrosion resistance performance on the carbon steel surface in the aggressive chloride environment, that is, 99.6%. The high corrosion resistance of the TESPT film is due to the hydrophobic nature of this silane, which leads to the formation of a stable and dense film. These results were supported by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) analyses.

2.
Environ Sci Pollut Res Int ; 30(7): 17951-17964, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36205863

ABSTRACT

A novel approach to synthesize porous Au/TiO2 nanocomposites has been achieved through a pyrolytic strategy by employing NH2-MIL-125(Ti) as a TiO2 precursor, and photo-deposition of Au nanoparticles (NPs) onto porous nanocrystalline TiO2 with varying Au contents (0.05-0.5%). TEM images of Au/TiO2 nanocomposites showed that TiO2 particles were spherical structures, highly dispersed, and homogeneous with diameters of 10-15 nm, and Au NPs (20-30 nm) were anchored onto porous TiO2 matrices with a uniform distribution. The synthesized Au/TiO2 nanocomposites were assessed through the degradation of two antibiotic models, metronidazole (MNZ), and trimethoprim (TMP), under visible light and compared with undoped TiO2 and commercial TiO2 (P-25). The synthesized Au/TiO2 photocatalyst revealed enhanced photocatalytic performance in the mineralization (80%) and degradation (100%) of MNZ and TMP in both water matrices compared to undoped TiO2 (60%, 76%) and commercial P-25 (48%, 65%). The obtained 0.1% Au/TiO2 nanocomposite could complete the mineralization of TMP and MNZ with rate constant values (4.47 × 10-3 min-1 and 5.23 × 10-1 min-1) owing to the large well-developed porosity and high surface area of TiO2 and the small size of Au NPs with high dispersity, surface plasmon resonance, and stability. The recyclability of the 0.1% Au/TiO2 nanocomposite exhibited high durability without the leaching or loss of photocatalytic performance after four cycles. Complete degradation was achieved within 100 min in the water matrix from real wastewater, indicating promising results for the degradation of pharmaceuticals in the different water matrices. The present work opens a new route to synthesize low-cost, effective, and high photocatalytic performance nanocomposites with a small Au content as a cocatalyst onto semiconductor materials.


Subject(s)
Gold , Metal Nanoparticles , Gold/chemistry , Anti-Bacterial Agents , Porosity , Metal Nanoparticles/chemistry , Water
3.
J Environ Manage ; 314: 115047, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35452879

ABSTRACT

The efficient remediation of pharmaceuticals, including wastewater, remains a remarkably challenging issue for water regeneration. Herein, porous Au/TiO2 synthesized by pyrolysis of NH2-MIL-125(Ti) was utilized to be an efficient photocatalyst for mineralization of trimethoprim (TMP) and Metronidazole (MNZ) as the parent compound. The effects of different factors, including TMP and MNZ concentrations, light intensity, H2O2 concentration, Au/TiO2 dosage, and pH value of reaction solution on the degradation and mineralization performances during UV and visible light (VIS), were addressed. The porous Au/TiO2 photocatalyst exhibited superior photocatalytic degradation of TMP and MNZ under UV and VIS illumination. The optimum pH values were 4; the optimum dosage of Au/TiO2 was 1.5 g/L, H2O2 concentration was 9.8 mM, TMP and MNZ concentrations was 10 ppm, and their photodegradation efficiency was 100% after 30 min illumination time and mineralization efficiency 98.2% after 3 h illumination for TMP and MNZ, respectively under UV illumination, however, the photodegradation efficiency was 100% after 50 min illumination and mineralization efficiency 96.3% after 4.5 h illumination time for TMP and MNZ, respectively under VIS illumination. The real wastewater matrix with 10 mg/L of TMP and MNZ were subjected to 60 min of illumination under similar optimum conditions of synthetic solution. The results indicated that photodegradation efficiency was determined to be 100% after 70 min illumination time for removal of both TMP (k = 3.4 × 10-2 min-1) and MNZ (k = 2.87 × 10-2 min-1). This is ascribed to the incorporation of Au NPs onto TiO2, reducing the photoinduced electron-hole recombination, thus promoting the photocatalytic performance. The possible mechanism for photodegradation of antibiotics was also discussed. The demonstration of photocatalysis mechanism over Au/TiO2 photocatalyst can provide some directing in the enhancement of novel photocatalysts based on MOFs doped by noble metal.


Subject(s)
Titanium , Wastewater , Catalysis , Gold/chemistry , Hydrogen Peroxide , Pharmaceutical Preparations , Photolysis , Pyrolysis , Titanium/chemistry
4.
Bioresour Technol ; 102(21): 10094-103, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21908187

ABSTRACT

Butyl acetate holds great potential as a sustainable biofuel additive. Heterogeneously catalyzed transesterification of biobutanol and bioethylacetate can produce butyl acetate. This route is eco-friendly and offers several advantages over the commonly used Fischer Esterification. The Amberlite IR 120- and Amberlyst 15-catalyzed transesterification is studied in a batch reactor over a range of catalyst loading (6-12 wt.%), alcohol to ester feed ratio (1:3 to 3:1), and temperature (303.15-333.15K). A butanol mole fraction of 0.2 in the feed is found to be optimum. Amberlite IR 120 promotes faster kinetics under these conditions. The transesterifications studied are slightly exothermic. The moles of solvent sorbed per gram of catalyst decreases (ethanol>butanol>ethyl acetate>butyl acetate) with decrease in solubility parameter. The dual site models, the Langmuir Hinshelwood and Popken models, are the most successful in correlating the kinetics over Amberlite IR 120 and Amberlyst 15, respectively.


Subject(s)
Acetates/chemical synthesis , Acetates/metabolism , Biofuels/analysis , Butanols/metabolism , Renewable Energy , Batch Cell Culture Techniques , Catalysis , Diffusion , Esterification , Kinetics , Models, Chemical , Polystyrenes/chemistry , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...