Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Toxicology ; 443: 152557, 2020 10.
Article in English | MEDLINE | ID: mdl-32791093

ABSTRACT

BACKGROUND: Lead induces endothelial dysfunction and hypertension in humans and animals. Seven-day exposure to a low dose in rats reduces vasocontractile responses and increases nitric oxide (NO) bioavailability. We hypothesized that this occurs by angiotensin II receptors (AT1/AT2) activation. MATERIALS AND RESULTS: Wistar rats were exposed to lead acetate (1 st dose 4 µg/100 g, subsequent dose 0.05 µg/100 g/day i.m., 7 days) or saline (control group). Lead acetate exposure reduced the phenylephrine vascular response. Pre-incubations with NO synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME) or phosphatidylinositol 3-kinase (PI3K) inhibitor (wortmannin) increased the contractile response in aortas from lead-treated rats. Pre-incubation with AT2 antagonist (PD123319) restored normal vascular contraction, and both PD123319 or AT1 antagonist (losartan) impeded the potentiated effects of L-NAME and wortmannin. Reinforcing those findings, increased NO bioavailability was blunted by AT1 and AT2 antagonists without summative effect when co-incubated. Finally, to test whether activation of AT1 could upregulate AT2 to increase NO bioavailability rats were simultaneously exposed to lead acetate and treated with losartan (15 mg/kg/day, orally given). Losartan prevented changes on vascular reactivity and endothelial modulation in lead-exposed group. Moreover, incubation with PD123319 had no more effects in aortic from losartan-treated rats. CONCLUSION: Our results suggest that low-dose lead acetate exposure induces an increase of NO involving mainly AT2 receptor activation and the PI3K/Protein Kinase B (PI3K/Akt) pathway. Additionally, we suggest that AT1 activation plays a role in AT2 upregulation, probably as a protective mechanism. Altogether, these effects might contribute to preserving endothelial function against the harmful effects by lead in the vascular system.


Subject(s)
Endothelium, Vascular/drug effects , Nitric Oxide/metabolism , Organometallic Compounds/toxicity , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Angiotensin, Type 1/metabolism , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Male , Rats, Wistar , Signal Transduction/drug effects
2.
Front Physiol ; 11: 590308, 2020.
Article in English | MEDLINE | ID: mdl-33488395

ABSTRACT

Lead (Pb) exposure causes hazardous effects as hypertension and other cardiovascular diseases. We evaluated whether chronic Pb exposure alters the peripheral vascular resistance measuring the vascular reactivity of mesenteric resistance arteries in rats to identify the underlying mechanisms that are associated to the development of Pb-induced hypertension. Mesenteric resistance arteries from lead-treated and untreated Wistar rats (1st dose: 10 µg/100 g; subsequent doses: 0.125 µg/100 g, intramuscular, 30 days) were used. Contractile responses to phenylephrine increased, while acetylcholine and sodium nitroprusside-induced relaxation was not affected by lead treatment. Endothelium removal and inhibition of NO synthase by L-NAME similarly enhanced the response to phenylephrine in untreated and lead-treated rats. The antioxidants apocynin and superoxide dismutase (SOD) did not affect vasoconstriction in either group. The vascular expression of cyclooxygenase-2 (COX-2) protein increased after lead exposure. The respective non-specific or specific COX-2 inhibitors indomethacin and NS398 reduced more strongly the response to phenylephrine in treated rats. Antagonists of EP1 (SC19220), TP (SQ29548), IP (CAY10441) and angiotensin II type 1 (losartan) receptors reduced vasoconstriction only in treated rats. These conclusions present further evidence that lead, even in small concentration, produces cardiovascular hazards being an environmental contaminant that account for lead-induced hypertension.

3.
Arq. bras. cardiol ; 112(4): 374-380, Apr. 2019. tab
Article in English | LILACS | ID: biblio-1001285

ABSTRACT

Abstract Background: Mercury's deleterious effects are associated with increased cardiovascular risk. Objective: To determine whether chronic exposure to inorganic mercury increases the activity of angiotensin-converting enzyme and its relationship with oxidative stress in several organs and tissues. Methods: We studied male Wistar and spontaneously hypertensive rats (SHR) (3-month-old) exposed or not to HgCl2 for 30 days. At the end of treatment, we investigated the following: changes in body weight, hemodynamic parameters, angiotensin-converting enzyme (ACE) activity and oxidative stress in the heart, aorta, lung, brain and kidney in hypertensive compared to normotensive animals. A value of p < 0.05 was considered significant. Results: Chronic exposure to HgCl2 did not affect weight gain in either group. Systolic blood pressure, measured weekly, did not increase in Wistar rats but showed a small increase in SHR rats. We also observed increases in left ventricular end-diastolic pressure and ACE activity in the plasma and hearts of normotensive rats. In the SHR+Hg group, ACE activity increased in plasma but decreased in kidney, lung, heart, brain and aorta. Oxidative stress was assessed indirectly by malondialdehyde (MDA) production, which increased in Hg-treated rats in both plasma and heart. In the SHR+Hg group, MDA increased in heart and aorta and decreased in lungs and brain. Conclusion: These results suggest that chronic exposure to inorganic mercury aggravates hypertension and produces more expressive changes in ACE activity and oxidative stress in SHRs. Such exposure affects the cardiovascular system, representing a risk factor for the development of cardiovascular disorders in normotensive rats and worsening of pre-existing risks for hypertension.


Resumo Fundamento: Os efeitos deletérios do mercúrio estão associados ao risco cardiovascular aumentado. Objetivo: Determinar se a exposição crônica ao mercúrio inorgânico aumenta a atividade da enzima conversora de angiotensina e sua relação com o estresse oxidativo em vários órgãos e tecidos. Métodos: Estudamos ratos Wistar e ratos espontaneamente hipertensos (SHR) (3 meses de idade) expostos ou não a HgCl2 por 30 dias. Ao final do tratamento, investigamos: alterações de peso, parâmetros hemodinâmicos, atividade da enzima conversora de angiotensina (ECA) e estresse oxidativo no coração, aorta, pulmão, cérebro e rim de animais hipertensos comparados a animais normotensos. Um valor de p < 0,05 foi considerado significativo. Resultados: A exposição crônica ao HgCl2 não afetou o ganho de peso em nenhum dos grupos. A pressão arterial sistólica, medida semanalmente, não aumentou em ratos Wistar, mas mostrou um pequeno aumento nos ratos SHR. Também observamos aumentos na pressão diastólica final do ventrículo esquerdo e na atividade da ECA no plasma e no coração de ratos normotensos. No grupo SHR + Hg, a atividade da ECA aumentou no plasma, mas diminuiu no rim, pulmão, coração, cérebro e aorta. O estresse oxidativo foi avaliado indiretamente pela produção de MDA, que aumentou nos ratos tratados com Hg tanto no plasma quanto no coração. No grupo SHR + Hg, o MDA aumentou no coração e na aorta e diminuiu nos pulmões e no cérebro. Conclusão: Estes resultados sugerem que a exposição crônica ao mercúrio inorgânico agrava a hipertensão e produz mudanças mais expressivas na atividade da ECA e no estresse oxidativo em SHRs. Essa exposição afeta o sistema cardiovascular, representando um fator de risco para o desenvolvimento de distúrbios cardiovasculares em ratos normotensos e para piorar riscos pré-existentes para hipertensão.


Subject(s)
Animals , Male , Peptidyl-Dipeptidase A/drug effects , Oxidative Stress/drug effects , Hypertension/metabolism , Mercury/toxicity , Mercury Poisoning/complications , Aorta/enzymology , Rats, Inbred SHR , Reference Values , Time Factors , Blood Pressure/drug effects , Brain/enzymology , Risk Factors , Rats, Wistar , Peptidyl-Dipeptidase A/analysis , Heart , Hypertension/physiopathology , Kidney/enzymology , Lung/enzymology , Malondialdehyde/blood
4.
Arq Bras Cardiol ; 112(4): 374-380, 2019 04.
Article in English, Portuguese | MEDLINE | ID: mdl-30624528

ABSTRACT

BACKGROUND: Mercury's deleterious effects are associated with increased cardiovascular risk. OBJECTIVE: To determine whether chronic exposure to inorganic mercury increases the activity of angiotensin-converting enzyme and its relationship with oxidative stress in several organs and tissues. METHODS: We studied male Wistar and spontaneously hypertensive rats (SHR) (3-month-old) exposed or not to HgCl2 for 30 days. At the end of treatment, we investigated the following: changes in body weight, hemodynamic parameters, angiotensin-converting enzyme (ACE) activity and oxidative stress in the heart, aorta, lung, brain and kidney in hypertensive compared to normotensive animals. A value of p < 0.05 was considered significant. RESULTS: Chronic exposure to HgCl2 did not affect weight gain in either group. Systolic blood pressure, measured weekly, did not increase in Wistar rats but showed a small increase in SHR rats. We also observed increases in left ventricular end-diastolic pressure and ACE activity in the plasma and hearts of normotensive rats. In the SHR+Hg group, ACE activity increased in plasma but decreased in kidney, lung, heart, brain and aorta. Oxidative stress was assessed indirectly by malondialdehyde (MDA) production, which increased in Hg-treated rats in both plasma and heart. In the SHR+Hg group, MDA increased in heart and aorta and decreased in lungs and brain. CONCLUSION: These results suggest that chronic exposure to inorganic mercury aggravates hypertension and produces more expressive changes in ACE activity and oxidative stress in SHRs. Such exposure affects the cardiovascular system, representing a risk factor for the development of cardiovascular disorders in normotensive rats and worsening of pre-existing risks for hypertension.


Subject(s)
Hypertension/metabolism , Mercury Poisoning/complications , Mercury/toxicity , Oxidative Stress/drug effects , Peptidyl-Dipeptidase A/drug effects , Animals , Aorta/enzymology , Blood Pressure/drug effects , Brain/enzymology , Heart , Hypertension/physiopathology , Kidney/enzymology , Lung/enzymology , Male , Malondialdehyde/blood , Peptidyl-Dipeptidase A/analysis , Rats, Inbred SHR , Rats, Wistar , Reference Values , Risk Factors , Time Factors
5.
Cardiovasc Toxicol ; 17(2): 190-199, 2017 04.
Article in English | MEDLINE | ID: mdl-27272938

ABSTRACT

Lead (Pb) induces adverse effects when it chronically accumulates in the body, including effects on the nervous and cardiovascular systems. Wistar rats were exposed to lead acetate for 30 days (first dose 4 µg/100 g followed by 0.05 µg/100 g/day, i.m.) to investigate the cardiovascular system impact on the autonomic control. The femoral artery and vein were catheterised to perform hemodynamic evaluations in awake rats: heart rate variability (HRV), baroreflex sensitivity, cardiopulmonary reflex and hemodynamic responses to vagal and sympathetic pharmacological blockade. Rats exposed to Pb exhibited a higher blood pressure and reduced HRV in the time domain when compared to the saline-injected group. Spectral analysis of the HRV in the frequency-domain showed an augmented low-frequency component of the spectrum. Methylatropine and atenolol administration suggest increased sympathetic tone and reduced vagal tone on the control of heart rate. Chronic Pb exposure decreased the sensitivity of the baroreflex without significantly changing the cardiopulmonary reflex. This study demonstrated for the first time in an animal model of a controlled, low-dose chronic lead exposure that cardiovascular changes, such as arterial hypertension, are accompanied by impaired autonomic control of the cardiovascular system, as characterised by reduced baroreflex sensitivity and a sympathovagal imbalance.


Subject(s)
Baroreflex , Blood Pressure , Cardiovascular System/innervation , Heart Rate , Lead Poisoning, Nervous System/physiopathology , Organometallic Compounds , Sympathetic Nervous System/physiopathology , Vagus Nerve/physiopathology , Animals , Disease Models, Animal , Lead Poisoning, Nervous System/etiology , Rats, Wistar , Time Factors
6.
Toxicol Appl Pharmacol ; 283(2): 127-38, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25596430

ABSTRACT

Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 µg/100g; subsequent doses: 0.125µg/100g, intramuscular, 30days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20µg/dL) were used. Lead blood levels of treated rats attained 21.7±2.38µg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and did not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension.


Subject(s)
Cyclooxygenase 2/metabolism , Lead/toxicity , MAP Kinase Signaling System/physiology , Muscle, Smooth, Vascular/metabolism , Oxidative Stress/physiology , Vasoconstriction/physiology , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Activation/physiology , Lead/administration & dosage , MAP Kinase Signaling System/drug effects , Male , Muscle, Smooth, Vascular/drug effects , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Rats, Wistar , Vasoconstriction/drug effects
7.
Neurotoxicology ; 32(3): 350-4, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21377490

ABSTRACT

The present studies were conducted to changes arising from mercury poisoning in the central nervous system (CNS), with a focus on determining the receptors and neurotransmitters involved. Currently, little is known regarding the neurological basis of the cardiopulmonary effects of mercury poisoning. We evaluated changes in systolic arterial pressure (SAP), diastolic arterial pressure (DAP), respiratory rate (RR) and heart rate (HR) following a 5 µl intracisternal (i.c) injection of mercuric chloride (HgCl(2)) and the participation of the autonomic nervous system in these responses. 58 animals were utilized and distributed randomly into 10 groups and administered a 5 µL intracisternal injection of 0.68 µg/kg HgCl(2) (n=7), 1.2 µg/kg HgCl(2) (n=7), 2.4 µg/kg HgCl(2) (n=7), 60 µg/kg HgCl(2) (n=7), 120 µg/kg HgCl(2) (n=3), saline (control) (n=7), 60 µg/kg HgCl(2) plus prazosin (n=6), saline plus prazosin (n=6), 60 µg/kg HgCl(2) plus metilatropina (n=4) or saline plus metilatropina (n=4)HgCl(2). Anesthesia was induced with halothane and maintained as needed with urethane (1.2 g/kg) administered intravenously (i.v.) through a cannula placed in the left femoral vein. The left femoral artery was also cannulated to record systolic arterial pressure (SAP), diastolic arterial pressure (DAP) and heart rate (HR). A tracheotomy was performed to record respiratory rate. Animals were placed in a stereotaxic frame, and the cisterna magna was exposed. After a stabilization period, solutions (saline or HgCl(2)) were injected i.c., and cardiopulmonary responses were recorded for 50 min. Involvement of the autonomic nervous system was assessed through the i.v. injection of hexamethonium (20 mg/kg), prazosin (1 mg/kg) and methylatropine (1 mg/kg) 10 min before the i.c. injection of HgCl(2) or saline. Treatment with 0.68, 1.2, 2.4 µg/kg HgCl(2) or saline did not modify basal cardiorespiratory parameters, whereas the 120 µg/kg dose induced acute toxicity, provoking respiratory arrest and death. The administration of 60 µg/kg HgCl(2), however, induced significant increases (p<0.05) in SAP at the 30°, 40° and 50° min, timepoints and DAP at the 5°, 10°, 20°, 30°, 40° and 50° timepoints. RR was significantly decreased at the 5°, 10°, 20°, 40° and 50° min timepoints; however, there was no change in HR. Hexamethonium administration, which causes non-specific inhibition of the autonomic nervous system, abolished the observed cardiorespiratory effects. Similarly, prazosin, a α(1)-adrenoceptor blocker that specifically inhibits sympathetic nervous system function, abolished HgCl(2) induced increases in SAP and DAP without affecting HR and RR. Methylatropine (1 mg/Kg), a parasympathetic nervous system inhibitor, exacerbated the effects of HgCl(2) and caused slow-onset respiratory depression, culminating in respiratory arrest and death. Our results demonstrate that increases in SAP and DAP induced by the i.c. injection of mercuric chloride are mediated by activation of the sympathetic nervous system.


Subject(s)
Autonomic Nervous System/drug effects , Blood Pressure/drug effects , Cisterna Magna/drug effects , Environmental Pollutants/toxicity , Heart Rate/drug effects , Mercuric Chloride/toxicity , Mercury Poisoning, Nervous System/etiology , Respiratory Rate/drug effects , Adrenergic alpha-1 Receptor Antagonists/administration & dosage , Analysis of Variance , Animals , Autonomic Nervous System/physiopathology , Cisterna Magna/physiopathology , Dose-Response Relationship, Drug , Environmental Pollutants/administration & dosage , Male , Mercuric Chloride/administration & dosage , Mercury Poisoning, Nervous System/physiopathology , Mercury Poisoning, Nervous System/prevention & control , Microinjections , Nicotinic Antagonists/administration & dosage , Parasympatholytics/administration & dosage , Rats , Rats, Wistar , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...