Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
J Microbiol Methods ; 211: 106772, 2023 08.
Article in English | MEDLINE | ID: mdl-37343840

ABSTRACT

Numerous genotyping techniques based on different principles and with different costs and levels of resolution are currently available for understanding the transmission dynamics of brucellosis worldwide. We aimed to compare the population structure of the genomes of 53 Brazilian Brucella abortus isolates using eight different genotyping methods: multiple-locus variable-number tandem-repeat analysis (MLVA8, MLVA11, MLVA16), multilocus sequence typing (MLST9, MLST21), core genome MLST (cgMLST) and two techniques based on single nucleotide polymorphism (SNP) detection (parSNP and NASP) from whole genomes. The strains were isolated from six different Brazilian states between 1977 and 2008 and had previously been analyzed using MLVA8, MLVA11, and MLVA16. Their whole genomes were sequenced, assembled, and subjected to MLST9 MLST21, cgMLST, and SNP analyses. All the genotypes were compared by hierarchical grouping method based on the average distances between the correlation matrices of each technique. MLST9 and MLST21 had the lowest level of resolution, both revealing only four genotypes. MLVA8, MLVA11, and MLVA16 had progressively increasing levels of resolution as more loci were analyzed, identifying 6, 16, and 44 genotypes, respectively. cgMLST showed the highest level of resolution, identifying 45 genotypes, followed by the SNP-based methods, both of which had 44 genotypes. In the assessed population, MLVA was more discriminatory than MLST and was easier and cheaper to perform. SNP techniques and cgMLST provided the highest levels of resolution and the results from the two methods were in close agreement. In conclusion, the choice of genotyping technique can strongly affect one's ability to make meaningful epidemiological conclusions but is dependent on available resources: while the VNTR based techniques are more indicated to high prevalence scenarios, the WGS methods are the ones with the best discriminative power and therefore recommended for outbreaks investigation.


Subject(s)
Brucella abortus , Brucellosis , Humans , Brucella abortus/genetics , Genotyping Techniques , Genotype , Multilocus Sequence Typing/methods , Brucellosis/epidemiology , Minisatellite Repeats , Phylogeny
2.
Cell Immunol ; 384: 104661, 2023 02.
Article in English | MEDLINE | ID: mdl-36621093

ABSTRACT

Multiple sclerosis is an autoimmune disease that affects the central nervous system. Because of its complexity and the difficulty to treat, searching for immunoregulatory responses that reduce the clinical signs of disease by non-aggressive mechanisms and without adverse effects is a scientific challenge. Herein we propose a protocol of oral tolerance induction that prevented and controlled MOG-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. The genetically modified strain HSP65-producing Lactococcus lactis was orally administered for 5 consecutive days either before or during disease development in mice. Both protocols of feeding HSP65 resulted in significant reduction in the clinical score of EAE. Frequencies of LAP+CD4+Foxp3- regulatory T cells were higher in spleens and inguinal lymph nodes of fed mice. In addition, intravital microscopy showed that adherence of leukocytes to venules in the spinal cord was reduced in orally treated mice. Oral treatment with HSP65-producing L.lactis prevented leukocytes to leave the secondary lymphoid organs, therefore they could not reach the central nervous system. Despite the inhibition of pathological immune response that drive EAE development, activated T cells were at normal frequencies suggesting that oral tolerance did not induce general immunosuppression, but it led to specific control of pathogenic T cells. Our results indicate a novel therapeutic strategy to prevent and control autoimmune diseases such as multiple sclerosis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Lactococcus lactis , Multiple Sclerosis , Mice , Animals , Mice, Inbred C57BL , Spinal Cord
3.
Stem Cell Rev Rep ; 19(4): 906-927, 2023 05.
Article in English | MEDLINE | ID: mdl-36585572

ABSTRACT

Hematopoietic stem cells are maintained in a specialized microenvironment, known as the 'niche', within the bone marrow. Understanding the contribution of cellular and molecular components within the bone marrow niche for the maintenance of hematopoietic stem cells is crucial for the success of therapeutic applications. So far, the roles of crucial mechanisms within the bone marrow niche have been explored in transgenic animals in which genetic modifications are ubiquitously introduced in the whole body. The lack of precise tools to explore genetic alterations exclusively within the bone marrow prevents our determination of whether the observed outcomes result from confounding effects from other organs. Here, we developed a new method - 'whole bone subcutaneous transplantation'- to study the bone marrow niche in transgenic animals precisely. Using immunolabeling of CD45.1 (donor) vs. CD45.2 (recipient) hematopoeitic stem cells, we demonstrated that hematopoeitic stem cells from the host animals colonize the subcutaneously transplanted femurs after transplantation, while the hematopoietic stem cells from the donor disappear. Strikinlgy, the bone marrow niche of these subcutaneously transplanted femurs remain from the donor mice, enabling us to study specifically cells of the bone marrow niche using this model. We also showed that genetic ablation of peri-arteriolar cells specifically in donor femurs reduced the numbers of hematopoietic stem cells in these bones. This supports the use of this strategy as a model, in combination with genetic tools, to evaluate how bone marrow niche specific modifications may impact non-modified hematopoietic stem cells. Thus, this approach can be utilized for genetic manipulation in vivo of specific cell types only within the bone marrow. The combination of whole bone subcutaneous transplantation with rodent transgenic models will facilitate a more precise, complex and comprehensive understanding of existing problems in the study of the hematopoietic stem cell bone marrow niche.


Subject(s)
Bone Marrow , Hematopoietic Stem Cell Transplantation , Mice , Animals , Hematopoietic Stem Cells/metabolism , Bone Marrow Transplantation , Bone and Bones
4.
Probiotics Antimicrob Proteins ; 15(5): 1327-1341, 2023 10.
Article in English | MEDLINE | ID: mdl-36066817

ABSTRACT

The poultry sector demands alternative additives to antibiotics that can be used as performance enhancers. Therefore, this experiment was conducted to evaluate the probiotics effects on performance, intestinal health, and redox status of 720 broilers exposed to heat stress from 15 days of age. Eight dietary treatments were evaluated: basal diet (BD) without antibiotic and probiotic (T1); BD supplemented with antibiotic zinc bacitracin (T2), BD supplemented with commercial probiotic of Bacillus subtilis DSM 17,299 (T3), BD supplemented with non-commercial probiotic of Lactococcus lactis NCDO 2118, Lactobacillus delbrueckii CNRZ 327, Escherichia coli CEC15, or Saccharomyces boulardii (T4 to T7), and BD simultaneously supplemented with the four non-commercial probiotics (T8). Feed intake, weight gain, and feed conversion were determined in the period from 1 to 42 days of age. Carcass and cuts yield, abdominal fat deposition, cloacal temperature, weight and length of intestine, activity of myeloperoxidase and eosinophilic peroxidase enzymes in the jejunum, jejunal histomorphometry, relative gene expression in the jejunum (occludin, zonulin, interleukin-8, cholecystokinin, ghrelin, and heat shock protein-70), and liver (heat shock protein-70), in addition to malondialdehyde level and superoxide dismutase activity in the intestine, liver, and blood, were measured in broilers at 42 days old. As main results, broilers fed T1 diet exhibited lower weight gain (3.222 kg) and worse feed conversion (1.70 kg/kg). However, diets containing non-commercial probiotics resulted in up to 3.584 kg of weight gain and improved feed conversion by up to 10%, similar to that observed for broilers of the T2 and T3 groups.


Subject(s)
Chickens , Probiotics , Animals , Chickens/metabolism , Dietary Supplements , Diet , Heat-Shock Response , Anti-Bacterial Agents/metabolism , Weight Gain , Heat-Shock Proteins/metabolism , Animal Feed/analysis
5.
Angiogenesis ; 26(1): 129-166, 2023 02.
Article in English | MEDLINE | ID: mdl-36183032

ABSTRACT

Cancer cells are embedded within the tissue and interact dynamically with its components during cancer progression. Understanding the contribution of cellular components within the tumor microenvironment is crucial for the success of therapeutic applications. Here, we reveal the presence of perivascular GFAP+/Plp1+ cells within the tumor microenvironment. Using in vivo inducible Cre/loxP mediated systems, we demonstrated that these cells derive from tissue-resident Schwann cells. Genetic ablation of endogenous Schwann cells slowed down tumor growth and angiogenesis. Schwann cell-specific depletion also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of tumor biopsies revealed that increased expression of Schwann cell-related genes within melanoma was associated with improved survival. Collectively, our study suggests that Schwann cells regulate tumor progression, indicating that manipulation of Schwann cells may provide a valuable tool to improve cancer patients' outcomes.


Subject(s)
Neoplasms , Neuroglia , Humans , Retrospective Studies , Neuroglia/metabolism , Schwann Cells/metabolism , Schwann Cells/pathology , Pericytes , Tumor Microenvironment/physiology , Neoplasms/pathology
6.
Viruses ; 14(10)2022 10 21.
Article in English | MEDLINE | ID: mdl-36298869

ABSTRACT

BACKGROUND: The correct understanding of the epidemiological dynamics of COVID-19, caused by the SARS-CoV-2, is essential for formulating public policies of disease containment. METHODS: In this study, we constructed a picture of the epidemiological dynamics of COVID-19 in a Brazilian population of almost 17000 patients in 15 months. We specifically studied the fluctuations of COVID-19 cases and deaths due to COVID-19 over time according to host gender, age, viral load, and genetic variants. RESULTS: As the main results, we observed that the numbers of COVID-19 cases and deaths due to COVID-19 fluctuated over time and that men were the most affected by deaths, as well as those of 60 or more years old. We also observed that individuals between 30- and 44-years old were the most affected by COVID-19 cases. In addition, the viral loads in the patients' nasopharynx were higher in the early symptomatic period. We found that early pandemic SARS-CoV-2 lineages were replaced by the variant of concern (VOC) P.1 (Gamma) in the second half of the study period, which led to a significant increase in the number of deaths. CONCLUSIONS: The results presented in this study are helpful for future formulations of efficient public policies of COVID-19 containment.


Subject(s)
COVID-19 , SARS-CoV-2 , Male , Humans , Middle Aged , Adult , SARS-CoV-2/genetics , Pandemics , Brazil/epidemiology , COVID-19/epidemiology , Nasopharynx
7.
J Mol Med (Berl) ; 100(2): 151-165, 2022 02.
Article in English | MEDLINE | ID: mdl-34735579

ABSTRACT

Psychological stress predisposes our body to several disorders. Understanding the cellular and molecular mechanisms involved in the physiological responses to psychological stress is essential for the success of therapeutic applications. New studies show, by using in vivo inducible Cre/loxP-mediated approaches in combination with pharmacological blockage, that sympathetic nerves, activated by psychological stress, induce brown adipocytes to produce IL-6. Strikingly, this cytokine promotes gluconeogenesis in hepatocytes, that results in the decline of tolerance to inflammatory organ damage. The comprehension arising from this research will be crucial for the handling of many inflammatory diseases. Here, we review recent advances in our comprehension of the sympathetic nerve-adipocyte axis in the tissue microenvironment.


Subject(s)
Adipocytes/metabolism , Stress, Psychological/metabolism , Sympathetic Nervous System/metabolism , Animals , Humans , Interleukin-6/metabolism , Tumor Microenvironment
8.
BMC Bioinformatics ; 22(1): 596, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34915867

ABSTRACT

BACKGROUND: Bacterial genomes are being deposited into online databases at an increasing rate. Genome annotation represents one of the first efforts to understand organisms and their diseases. Some evolutionary relationships capable of being annotated only from genomes are conserved gene neighbourhoods (CNs), phylogenetic profiles (PPs), and gene fusions. At present, there is no standalone software that enables networks of interactions among proteins to be created using these three evolutionary characteristics with efficient and effective results. RESULTS: We developed GENPPI software for the ab initio prediction of interaction networks using predicted proteins from a genome. In our case study, we employed 50 genomes of the genus Corynebacterium. Based on the PP relationship, GENPPI differentiated genomes between the ovis and equi biovars of the species Corynebacterium pseudotuberculosis and created groups among the other species analysed. If we inspected only the CN relationship, we could not entirely separate biovars, only species. Our software GENPPI was determined to be efficient because, for example, it creates interaction networks from the central genomes of 50 species/lineages with an average size of 2200 genes in less than 40 min on a conventional computer. Moreover, the interaction networks that our software creates reflect correct evolutionary relationships between species, which we confirmed with average nucleotide identity analyses. Additionally, this software enables the user to define how he or she intends to explore the PP and CN characteristics through various parameters, enabling the creation of customized interaction networks. For instance, users can set parameters regarding the genus, metagenome, or pangenome. In addition to the parameterization of GENPPI, it is also the user's choice regarding which set of genomes they are going to study. CONCLUSIONS: GENPPI can help fill the gap concerning the considerable number of novel genomes assembled monthly and our ability to process interaction networks considering the noncore genes for all completed genome versions. With GENPPI, a user dictates how many and how evolutionarily correlated the genomes answer a scientific query.


Subject(s)
Protein Interaction Maps , Software , Animals , Phylogeny , Protein Interaction Maps/genetics , Sheep
9.
Microbiol Resour Announc ; 10(48): e0073121, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34854719

ABSTRACT

Pseudomonas sp. strain LAP_36 was isolated from rhizosphere soil from Deschampsia antarctica on King George Island, South Shetland Islands, Antarctica. Here, we report on its draft genome sequence, which consists of 8,794,771 bp with 60.0% GC content and 8,011 protein-coding genes.

10.
Acta Neuropathol Commun ; 9(1): 183, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34784974

ABSTRACT

Sensory neurons have recently emerged as components of the tumor microenvironment. Nevertheless, whether sensory neuronal activity is important for tumor progression remains unknown. Here we used Designer Receptors Exclusively Activated by a Designer Drug (DREADD) technology to inhibit or activate sensory neurons' firing within the melanoma tumor. Melanoma growth and angiogenesis were accelerated following inhibition of sensory neurons' activity and were reduced following overstimulation of these neurons. Sensory neuron-specific overactivation also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of melanoma biopsies revealed that increased expression of sensory neurons-related genes within melanoma was associated with improved survival. These findings suggest that sensory innervations regulate melanoma progression, indicating that manipulation of sensory neurons' activity may provide a valuable tool to improve melanoma patients' outcomes.


Subject(s)
Melanoma/genetics , Melanoma/pathology , Sensory Receptor Cells/pathology , Animals , Behavior, Animal/drug effects , Biopsy , Cell Line, Tumor , Computer Simulation , Disease Progression , Humans , Immunologic Surveillance , Lymphocytes/pathology , Melanoma, Experimental/genetics , Melanoma, Experimental/pathology , Mice , Mice, Transgenic , NAV1.8 Voltage-Gated Sodium Channel/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Sensory Receptor Cells/metabolism , Suppressor Factors, Immunologic , Tumor Microenvironment
11.
Microb Pathog ; 161(Pt A): 105263, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34687839

ABSTRACT

Corynebacterium ulcerans is an emerging pathogen able to transmit the acute infection diphtheria to humans. Although there is a well-established vaccine based on the toxin produced by Corynebacterium diphtheriae, another species of this genus known to cause the disease, there is still no vaccine formulations described for C. ulcerans; this fact contributes to the increase in cases of infection that has been observed. In this study, we want to provide information at the genomic level of this bacterium in order to suggest proteins as possible vaccine targets. We carried out an in silico prospection of vaccine candidates through reverse vaccinology for targets that exhibit antigenic potential against diphtheria. We found important virulence factors, such as adhesion-related ones, that are responsible for pathogen-host interaction after infection, but we did not find the diphtheria toxin, which is the main component of the currently available vaccine. This study provides detailed information about the exoproteome and hypothetical proteins from the core genome of C. ulcerans, suggesting vaccine targets to be further tested in vitro for the development of a new vaccine against diphtheria.


Subject(s)
Corynebacterium Infections , Diphtheria , Vaccines , Corynebacterium/genetics , Corynebacterium Infections/prevention & control , Diphtheria/prevention & control , Diphtheria Toxin/genetics , Humans , Virulence
12.
An Acad Bras Cienc ; 93(suppl 3): e20210431, 2021.
Article in English | MEDLINE | ID: mdl-34378637

ABSTRACT

A second deadlier wave of COVID-19 and the causes of the recent public health collapse of Manaus are compared with the Spanish flu events in that city, and Brazil. Historic sanitarian problems, and its hub position in the Brazilian airway network are combined drivers of deadly events related to COVID-19. These drivers were amplified by misleading governance, highly transmissible variants, and relaxation of social distancing. Several of these same factors may also have contributed to the dramatically severe outbreak of H1N1 in 1918, which caused the death of 10% of the population in seven months. We modelled Manaus parameters for the present pandemic and confirmed that lack of a proper social distancing might select the most transmissible variants. We succeeded to reproduce a first severe wave followed by a second stronger wave. The model also predicted that outbreaks may last for up to five and half years, slowing down gradually before the disease disappear. We validated the model by adjusting it to the Spanish Flu data for the city, and confirmed the pattern experienced by that time, of a first stronger wave in October-November 1918, followed by a second less intense wave in February-March 1919.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Pandemic, 1918-1919 , Brazil , History, 20th Century , Humans , Rainforest , SARS-CoV-2 , Syndemic
13.
Front Microbiol ; 12: 674147, 2021.
Article in English | MEDLINE | ID: mdl-34220757

ABSTRACT

The aim of the study was to evaluate the genotypic and phenotypic characteristics of 20 strains of S. Heidelberg (SH) isolated from broilers produced in southern Brazil. The similarity and presence of genetic determinants linked to virulence, antimicrobial resistance, biofilm formation, and in silico-predicted metabolic interactions revealed this serovar as a threat to public health. The presence of the ompC, invA, sodC, avrA, lpfA, and agfA genes was detected in 100% of the strains and the luxS gene in 70% of them. None of the strains carries the bla SHV, mcr-1, qnrA, qnrB, and qnrS genes. All strains showed a multidrug-resistant profile to at least three non-ß-lactam drugs, which include colistin, sulfamethoxazole, and tetracycline. Resistance to penicillin, ceftriaxone (90%), meropenem (25%), and cefoxitin (25%) were associated with the presence of bla CTX-M and bla CMY-2 genes. Biofilm formation reached a mature stage at 25 and 37°C, especially with chicken juice (CJ) addition. The sodium hypochlorite 1% was the least efficient in controlling the sessile cells. Genomic analysis of two strains identified more than 100 virulence genes and the presence of resistance to 24 classes of antibiotics correlated to phenotypic tests. Protein-protein interaction (PPI) prediction shows two metabolic pathways correlation with biofilm formation. Virulence, resistance, and biofilm determinants must be constant monitoring in SH, due to the possibility of occurring infections extremely difficult to cure and due risk of the maintenance of the bacterium in production environments.

14.
Histochem Cell Biol ; 156(2): 165-182, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34003355

ABSTRACT

Diagnosis and prognosis of breast cancer is based on disease staging identified through histopathological and molecular biology techniques. Animal models are used to gain mechanistic insights into the development of breast cancer. C(3)1-TAg is a genetically engineered mouse model that develops mammary cancer. However, carcinogenesis caused by this transgene was characterized in the Friend Virus B (FVB) background. As most genetic studies are done in mice with C57BL/6 J background, we aimed to define the histological alterations in C3(1)-TAg C57BL/6 J animals. Our results showed that C3(1)-TAg animals with C57BL/6 J background develop solid-basaloid adenoid cystic carcinomas with increased fibrosis, decreased area of adipocytes, and a high proliferative index, which are triple-negative for progesterone, estrogen, and human epidermal growth factor receptor 2 (HER2) receptors. Our results also revealed that tumor development is slower in the C57BL/6 J background when compared with the FVB strain, providing a better model to study the different stages in breast cancer progression.


Subject(s)
Antigens, Viral, Tumor/genetics , Breast Neoplasms/genetics , Carcinoma, Adenoid Cystic/genetics , Models, Genetic , Animals , Antigens, Viral, Tumor/immunology , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Carcinoma, Adenoid Cystic/immunology , Carcinoma, Adenoid Cystic/pathology , Female , Friend murine leukemia virus/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic
15.
Stem Cell Rev Rep ; 17(5): 1874-1888, 2021 10.
Article in English | MEDLINE | ID: mdl-34003465

ABSTRACT

Multiple infectious diseases lead to impaired lung function. Revealing the cellular mechanisms involved in this impairment is crucial for the understanding of how the lungs shift from a physiologic to a pathologic state in each specific condition. In this context, we explored the pathogenesis of Paracoccidioidomycosis, which affects pulmonary functioning. The presence of cells expressing Nestin-GFP has been reported in different tissues, and their roles as tissue-specific progenitors have been stablished in particular organs. Here, we explored how Nestin-GFP+ cells are affected after lung infection by Paracoccidioides brasiliensis, a model of lung granulomatous inflammation with fibrotic outcome. We used Nestin-GFP transgenic mice, parabiosis surgery, confocal microscopy and flow cytometry to investigate the participation of Nestin-GFP+ cells in Paracoccidioides brasiliensis pathogenesis. We revealed that these cells increase in the lungs post-Paracoccidioides brasiliensis infection, accumulating around granulomas. This increase was due mainly to Nestin-GPF+ cells derived from the blood circulation, not associated to blood vessels, that co-express markers suggestive of hematopoietic cells (Sca-1, CD45 and CXCR4). Therefore, our findings suggest that circulating Nestin-GFP+ cells participate in the Paracoccidioides brasiliensis pathogenesis in the lungs.


Subject(s)
Lung , Animals , Mice , Nestin/genetics , Paracoccidioides/genetics
16.
Front Immunol ; 12: 621706, 2021.
Article in English | MEDLINE | ID: mdl-33737928

ABSTRACT

Schistosomiasis remains a serious health issue nowadays for an estimated one billion people in 79 countries around the world. Great efforts have been made to identify good vaccine candidates during the last decades, but only three molecules reached clinical trials so far. The reverse vaccinology approach has become an attractive option for vaccine design, especially regarding parasites like Schistosoma spp. that present limitations for culture maintenance. This strategy also has prompted the construction of multi-epitope based vaccines, with great immunological foreseen properties as well as being less prone to contamination, autoimmunity, and allergenic responses. Therefore, in this study we applied a robust immunoinformatics approach, targeting S. mansoni transmembrane proteins, in order to construct a chimeric antigen. Initially, the search for all hypothetical transmembrane proteins in GeneDB provided a total of 584 sequences. Using the PSORT II and CCTOP servers we reduced this to 37 plasma membrane proteins, from which extracellular domains were used for epitope prediction. Nineteen common MHC-I and MHC-II binding epitopes, from eight proteins, comprised the final multi-epitope construct, along with suitable adjuvants. The final chimeric multi-epitope vaccine was predicted as prone to induce B-cell and IFN-γ based immunity, as well as presented itself as stable and non-allergenic molecule. Finally, molecular docking and molecular dynamics foresee stable interactions between the putative antigen and the immune receptor TLR 4. Our results indicate that the multi-epitope vaccine might stimulate humoral and cellular immune responses and could be a potential vaccine candidate against schistosomiasis.


Subject(s)
Antigens, Helminth/immunology , B-Lymphocytes/immunology , Immunodominant Epitopes/immunology , Medical Informatics/methods , Membrane Proteins/immunology , Recombinant Fusion Proteins/immunology , Schistosoma mansoni/immunology , Schistosomiasis mansoni/immunology , Vaccines/immunology , Animals , Antigens, Helminth/genetics , Computational Biology , Epitope Mapping , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class II/metabolism , Humans , Immunity, Cellular , Immunity, Humoral , Immunodominant Epitopes/genetics , Interferon-gamma/metabolism , Lymphocyte Activation , Membrane Proteins/genetics , Molecular Docking Simulation , Protein Binding , Recombinant Fusion Proteins/genetics , Toll-Like Receptor 4/metabolism , Vaccines/genetics , Vaccines, Subunit , Vaccinology
17.
Mitochondrion ; 58: 1-13, 2021 05.
Article in English | MEDLINE | ID: mdl-33582235

ABSTRACT

The mitochondrion is an organelle found in eukaryote organisms, and it is vital for different cellular pathways. The mitochondrion has its own DNA molecule and, because its genetic content is relatively conserved, despite the variation of size and structure, mitogenome sequences have been widely used as a promising molecular biomarker for taxonomy and evolution in fungi. In this study, the mitogenomes of two fungal species of Agaricomycetes class, Phellinotus piptadeniae and Trametes villosa, were assembled and annotated for the first time. We used these newly sequenced mitogenomes for comparative analyses with other 55 mitogenomes of Agaricomycetes available in public databases. Mitochondrial DNA (mtDNA) size and content are highly variable and non-coding and intronic regions, homing endonucleases (HEGs), and unidentified ORFs (uORFs) significantly contribute to the total size of the mitogenome. Furthermore, accessory genes (most of them as HEGs) are shared between distantly related species, most likely as a consequence of horizontal gene transfer events. Conversely, uORFs are only shared between taxonomically related species, most probably as a result of vertical evolutionary inheritance. Additionally, codon usage varies among mitogenomes and the GC content of mitochondrial features may be used to distinguish coding from non-coding sequences. Our results also indicated that transposition events of mitochondrial genes to the nuclear genome are not common. Despite the variation of size and content of the mitogenomes, mitochondrial genes seemed to be reliable molecular markers in our time-divergence analysis, even though the nucleotide substitution rates of mitochondrial and nuclear genomes of fungi are quite different. We also showed that many events of mitochondrial gene shuffling probably happened amongst the Agaricomycetes during evolution, which created differences in the gene order among species, even those of the same genus. Altogether, our study revealed new information regarding evolutionary dynamics in Agaricomycetes.


Subject(s)
Basidiomycota/genetics , Genes, Fungal , Genome, Mitochondrial , Polyporaceae/genetics , Codon , DNA, Mitochondrial/genetics , Introns , Open Reading Frames
18.
Stem Cells Transl Med ; 10(3): 346-356, 2021 03.
Article in English | MEDLINE | ID: mdl-33112056

ABSTRACT

Niches are specialized tissue microenvironments that control stem cells functioning. The bone marrow mesenchymal stem cell niche defines a location within the marrow in which mesenchymal stem cells are retained and produce new cells throughout life. Deciphering the signaling mechanisms by which the niche regulates stem cell fate will facilitate the use of these cells for therapy. Recent studies, by using state-of-the-art methodologies, including sophisticated in vivo inducible genetic techniques, such as lineage-tracing Cre/loxP mediated systems, in combination with pharmacological inhibition, provide evidence that sensory neuron is an important component of the bone marrow mesenchymal stem cell niche. Strikingly, knockout of a specific receptor in sensory neurons blocked stem cell function in the bone marrow. The knowledge arising from these discoveries will be crucial for stem cell manipulation in the future. Here, we review recent progress in our understanding of sensory nerves biology in the stem cell niche.


Subject(s)
Mesenchymal Stem Cells , Sensory Receptor Cells , Stem Cell Niche , Bone Marrow , Cell Differentiation , Stem Cells
19.
Braz J Microbiol ; 52(1): 431-438, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33185852

ABSTRACT

Caseous lymphadenitis (CL) in sheep is a chronic contagious disease caused by Corynebacterium pseudotuberculosis, commonly characterized by abscess formation in peripheral lymph nodes and disseminated infections. Nonetheless, other microorganisms, including with zoonotic relevance, can be isolated from CL-resembling lymph nodes. Currently, mycobacteria have been reported in visceral granulomatous lesions in small ruminants, a fact that poses a public health issue, particularly in slaughtered sheep intended for human consumption. Cytology using fine needle aspiration and microbiological culturing are suitable tests for routine diagnostic, whereas present drawbacks and molecular methods have been confirmatory. Data about the occurrence of mycobacteria in both lymph nodes with aspect of CL and apparently healthy visceral nodes of sheep slaughtered for human consumption are scarce. In this study, 197 visceral lymph nodes of sheep showed lymphadenitis and 202 healthy visceral lymph nodes of slaughtered sheep intended for human consumption were submitted to conventional bacteriological diagnosis, mycobacteria culturing, and cytological evaluation. Compatible Corynebacterium isolates were subjected to multiplex PCR targeting 16S rRNA, rpoB, and pld genes to detect C. pseudotuberculosis. Based on microbiological identification, C. pseudotuberculosis (86/197; 43.7%), streptococci γ-hemolytic (17/197; 8.6%), and Trueperella pyogenes (12/197; 6.1%) were prevalent in lymph nodes with abscesses, as opposed to staphylococci (53/202; 26.2%) in apparently healthy lymph nodes. No mycobacteria were isolated. Cytology identified 49.2% (97/197) Gram-positive pleomorphic organisms (coryneform aspect). Multiplex PCR confirmed genetic material of C. pseudotuberculosis in 74.4% (64/86) of the samples with C. pseudotuberculosis isolation and 66% (64/97) samples with cytological coryneform aspect (κ = 86.78%; 95% CI = 79.87-93.68%). These findings emphasize the prevalence of C. pseudotuberculosis in abscess formation among peripheral lymph nodes of sheep. Other bacteria were also identified in lymph nodes sampled that resembling C. pseudotuberculosis-induced infections that may difficult the diagnosis. Multiplex PCR revealed a valuable assay to detect C. pseudotuberculosis, in addition to routine methods applied to CL-diagnosis. No mycobacteria were identified in lymph nodes sampled, with and without apparent lesions. Nonetheless, due to public health impacts, this pathogen should be considered as a differential diagnosis of C. pseudotuberculosis-induced infections during inspection procedures of slaughtered sheep intended for human consumption.


Subject(s)
Bacteria/genetics , Coinfection/veterinary , Corynebacterium pseudotuberculosis/genetics , Lymph Nodes/cytology , Lymph Nodes/microbiology , Lymphadenitis/microbiology , Lymphadenitis/veterinary , Mycobacterium/genetics , Abattoirs , Animals , Bacteria/classification , Brazil/epidemiology , Coinfection/microbiology , Cross-Sectional Studies , Farms , Female , Male , Prevalence , RNA, Ribosomal, 16S/genetics , Random Allocation , Sheep/microbiology , Sheep Diseases/epidemiology , Sheep Diseases/microbiology
20.
An Acad Bras Cienc ; 92(4): e20201139, 2020.
Article in English | MEDLINE | ID: mdl-32965306

ABSTRACT

The spread of SARS-CoV-2 and the distribution of cases worldwide followed no clear biogeographic, climatic, or cultural trend. Conversely, the internationally busiest cities in all countries tended to be the hardest hit, suggesting a basic, mathematically neutral pattern of the new coronavirus early dissemination. We tested whether the number of flight passengers per time and the number of international frontiers could explain the number of cases of COVID-19 worldwide by a stepwise regression. Analysis were taken by 22 May 2020, a period when one would claim that early patterns of the pandemic establishment were still detectable, despite of community transmission in various places. The number of passengers arriving in a country and the number of international borders explained significantly 49% of the variance in the distribution of the number of cases of COVID-19, and number of passengers explained significantly 14.2% of data variance for cases per million inhabitants. Ecological neutral theory may explain a considerable part of the early distribution of SARS-CoV-2 and should be taken into consideration to define preventive international actions before a next pandemic.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Travel , Aircraft , Betacoronavirus , COVID-19 , Cities , Humans , Models, Theoretical , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...