Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; 342: 109476, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33872575

ABSTRACT

Ketamine is the prototype for glutamate-based fast-acting antidepressants. The establishment of ketamine-like drugs is still a challenge and ascorbic acid has emerged as a candidate. This study investigated the ascorbic acid's ability to induce a fast antidepressant-like response and to improve hippocampal synaptic markers in mice subjected to chronic corticosterone (CORT) administration. CORT was administered for 21 days, followed by a single administration of ascorbic acid (1 mg ∕Kg, p.o.), ketamine (1 mg ∕Kg, i.p.) or fluoxetine (10 mg ∕Kg, p.o.) in mice. Depressive-like behavior, hippocampal synaptic proteins immunocontent, dendrite spines density in the dentate gyrus (DG) were analyzed 24 h following treatments. The administration of ascorbic acid or ketamine, but not fluoxetine, counteracted CORT-induced depressive-like behavior in the tail suspension test (TST). CORT administration reduced PSD-95, GluA1, and synapsin (synaptic markers) immunocontent, and these alterations were reversed by ascorbic acid or ketamine, but only ketamine reversed the CORT-induced reduction on GluA1 immunocontent. In the ventral and dorsal DG, CORT decreased filopodia-, thin- and stubby-shaped spines, while ascorbic acid and ketamine abolished this alteration only in filopodia spines. Ascorbic acid and ketamine increased mushroom-shaped spines density in ventral and dorsal DG. Therefore, the results show that a single administration of ascorbic acid, in a way similar to ketamine, rapidly elicits an antidepressant-like response and reverses hippocampal synaptic deficits caused by CORT, an effect associated with increased levels of synaptic proteins and dendritic remodeling.


Subject(s)
Antidepressive Agents/therapeutic use , Ascorbic Acid/therapeutic use , Depression/drug therapy , Hippocampus/drug effects , Animals , Corticosterone , Dendritic Spines/drug effects , Depression/chemically induced , Female , Hindlimb Suspension , Ketamine/therapeutic use , Mice , Neuroprotective Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...