Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 18(9): e1010426, 2022 09.
Article in English | MEDLINE | ID: mdl-36155646

ABSTRACT

Nucleotide excision repair is the primary repair mechanism that removes UV-induced DNA lesions in placentals. Unrepaired UV-induced lesions could result in mutations during DNA replication. Although the mutagenesis of pyrimidine dimers is reasonably well understood, the direct effects of replication fork progression on nucleotide excision repair are yet to be clarified. Here, we applied Damage-seq and XR-seq techniques and generated replication maps in synchronized UV-treated HeLa cells. The results suggest that ongoing replication stimulates local repair in both early and late replication domains. Additionally, it was revealed that lesions on lagging strand templates are repaired slower in late replication domains, which is probably due to the imbalanced sequence context. Asymmetric relative repair is in line with the strand bias of melanoma mutations, suggesting a role of exogenous damage, repair, and replication in mutational strand asymmetry.


Subject(s)
Pyrimidine Dimers , Ultraviolet Rays , DNA/genetics , DNA Damage/genetics , DNA Repair/genetics , DNA Replication/genetics , HeLa Cells , Humans , Pyrimidine Dimers/genetics , Ultraviolet Rays/adverse effects
2.
Viruses ; 13(3)2021 03 02.
Article in English | MEDLINE | ID: mdl-33801257

ABSTRACT

Understanding SARS-CoV-2 evolution is a fundamental effort in coping with the COVID-19 pandemic. The virus genomes have been broadly evolving due to the high number of infected hosts world-wide. Mutagenesis and selection are two inter-dependent mechanisms of virus diversification. However, which mechanisms contribute to the mutation profiles of SARS-CoV-2 remain under-explored. Here, we delineate the contribution of mutagenesis and selection to the genome diversity of SARS-CoV-2 isolates. We generated a comprehensive phylogenetic tree with representative genomes. Instead of counting mutations relative to the reference genome, we identified each mutation event at the nodes of the phylogenetic tree. With this approach, we obtained the mutation events that are independent of each other and generated the mutation profile of SARS-CoV-2 genomes. The results suggest that the heterogeneous mutation patterns are mainly reflections of host (i) antiviral mechanisms that are achieved through APOBEC, ADAR, and ZAP proteins, and (ii) probable adaptation against reactive oxygen species.


Subject(s)
COVID-19/immunology , COVID-19/virology , Mutation , SARS-CoV-2/genetics , Base Sequence , COVID-19/genetics , Codon/genetics , Evolution, Molecular , Genome, Viral , Humans , Pandemics , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...