Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 63(11): 6107-6133, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32368909

ABSTRACT

Voltage-gated sodium channel NaV1.7 is a genetically validated target for pain. Identification of NaV1.7 inhibitors with all of the desired properties to develop as an oral therapeutic for pain has been a major challenge. Herein, we report systematic structure-activity relationship (SAR) studies carried out to identify novel sulfonamide derivatives as potent, selective, and state-dependent NaV1.7 inhibitors for pain. Scaffold hopping from benzoxazine to chroman and indane bicyclic system followed by thiazole replacement on sulfonamide led to identification of lead molecules with significant improvement in solubility, selectivity over NaV1.5, and CYP2C9 inhibition. The lead molecules 13, 29, 32, 43, and 51 showed a favorable pharmacokinetics (PK) profile across different species and robust efficacy in veratridine and formalin-induced inflammatory pain models in mice. Compound 51 also showed significant effects on the CCI-induced neuropathic pain model. The profile of 51 indicated that it has the potential for further evaluation as a therapeutic for pain.


Subject(s)
Chromans/chemistry , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Sulfonamides/chemistry , Voltage-Gated Sodium Channel Blockers/chemistry , Animals , Chromans/pharmacokinetics , Chromans/therapeutic use , Cytochrome P-450 CYP2C9/chemistry , Cytochrome P-450 CYP2C9/metabolism , Cytochrome P-450 CYP3A/chemistry , Cytochrome P-450 CYP3A/metabolism , Disease Models, Animal , Drug Design , Drug Evaluation, Preclinical , Half-Life , Male , Mice , Mice, Inbred BALB C , NAV1.7 Voltage-Gated Sodium Channel/chemistry , Neuralgia/chemically induced , Neuralgia/drug therapy , Neuralgia/pathology , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/therapeutic use , Voltage-Gated Sodium Channel Blockers/pharmacokinetics , Voltage-Gated Sodium Channel Blockers/therapeutic use
2.
Prep Biochem Biotechnol ; 45(3): 268-78, 2015.
Article in English | MEDLINE | ID: mdl-24679250

ABSTRACT

Enteropeptidase (EC 3.4.21.9) is the glycoprotein enzyme in the small intestine that triggers the activation of the zymogens in pancreatic juice by converting trypsinogen into trypsin. Because of its physiological significance, there have been many studies on the expression, purification, and characterization of enteropeptidase from different species. The baculovirus expression system has been commonly used in research communities and scientific industries for the production of high levels of recombinant proteins, which require posttranslational modifications for functional activity. In the present study, we isolated bovine enteropeptidase catalytic subunit gene from Bos taurus indicus (GenBank accession no. KC756844), and cloned it in pFast Bac HT "A" baculovirus expression donor vector, under the polyhedrin promoter. Recombinant bovine enteropeptidase was expressed in SF-9 insect cells with high expression levels. Recombinant enteropeptidase was purified using Ni-NTA affinity chromatography. A 6-mg quantity of pure active protein was obtained from 100 mL culture using this approach. Its activity and kinetic parameters were determined by cleavage of its fluorogenic substrate Gly-(Asp) 4-Lys-ß-naphthylamide. The recombinant bovine enteropeptidase showed a K m value of 0.75 ± 0.02 mM with K cat 25 ± 1 s.


Subject(s)
Baculoviridae/genetics , Enteropeptidase/biosynthesis , Animals , Cattle , Cell Line , Enteropeptidase/genetics , Enteropeptidase/metabolism , Kinetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Spodoptera
SELECTION OF CITATIONS
SEARCH DETAIL
...