Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Mol Biol Plants ; 28(6): 1217-1232, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35910441

ABSTRACT

Assessing genetic diversity and development of a core set of elite breeding lines is a prerequisite for selective hybridization programes intended to improve the yield potential in rice. In the present study, the genetic diversity of newly developed elite lines derived from indicax tropical japonica and indicax indica crosses were estimated by 38 reported molecular markers. The markers used in the study consist of 24 gene-based and 14 random markers related to grain yield-related QTLs distributed across the rice genome. Genotypic characterization was carried out to determine the genetic similarities between the elite lines. In total, 75 alleles were found using 38 polymorphic markers, with polymorphism information content ranging from 0.10 to 0.51 with an average of 0.35. The genotypes were divided into three groups based on cluster analysis, structure analysis and also dispersed throughout the quadrangle of PCA, but nitrogen responsive lines clustered in one quadrangle. Seven markers (GS3_RGS1, GS3_RGS2, GS5_Indel1, Ghd 7_05SNP, RM 12289, RM 23065 and RM 25457) exhibited PIC values ≥ 0.50 indicating that they were effective in detecting genetic relationships among elite rice. Additionally, a core set of 11 elite lines was made from 96 lines in order to downsize the diversity of the original population into a small set for parental selection. In general, the genetic information collected in this work will aid in the study of grain yield traits at molecular level for other sets of rice genotypes and for selecting diverse elite lines to develop a strong crossing programme in rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01190-8.

SELECTION OF CITATIONS
SEARCH DETAIL
...