Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 7584, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35534527

ABSTRACT

A miniature planar antenna is a vital component of any portable wireless communication device. The antenna in portable devices should provide wide/multiple operating bands to cover a good number of narrowband services as a multi-band antenna not only reduces the number of antennas but also lessens the system complexity, cost, and device size. To operate over S-, C-, WiMAX, WLAN, UWB, and X-communication bands, in this paper, a dual-band CPW-fed antenna is presented. The anticipated antenna is made up of a vertical bow-tie-shaped patch and two asymmetric ground planes and etched on the same side of the single-sided standard substrate material. To generate two distinct operating bands, an inverted L-shaped parasitic element is inserted within the modified U-shaped coplanar ground plane. The antenna achieved dual operating bands of 3.24-8.29 GHz and 9.12-11.25 GHz in measurement which helps the proposed antenna to cover S-, C-, WiMAX, WLAN, 4G LTE, 5G sub-6 GHz, UWB, and X-communication bands. In the two operating bands, the antenna realized a peak gain of 4.33 dBi, and 4.80 dBi, the maximum radiation efficiency of 86.6%, and 72.6%, and exhibits symmetric radiation patterns. In the operating bands, the antenna also exhibits good time-domain behavior which helps it to transmit the signal with minimum distortion.

2.
Sci Rep ; 11(1): 15298, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34315996

ABSTRACT

Due to the rapid development of wireless communication systems, good numbers of services and devices use different frequency bands and protocols. To concurrently cover all these services, the antenna in communication devices should operate over multiple frequency bands. The use of wide and multi-band antennas not only reduces the number of antennas necessary to cover multiple frequency bands but also lessens the system complexity, size, and costs. To operate over eight frequency bands to cover sixteen well-established narrow service bands, a planar monopole antenna is proposed for portable communication devices. The proposed antenna is comprised of an inverted F-shaped monopole patch with a rotated L-shaped strip and an F-shaped ground strip with a rotated L-shaped branch. The studied antenna can excite at multiple resonant modes which helps it to achieve eight measured operating bands of 789-921 MHz, 1367-1651 MHz, 1995-2360 MHz, 2968-3374 MHz, 3546-3707, 4091-4405 MHz, 4519-5062 MHz and 5355-6000 MHz. The achieved measured operating bands can cover sixteen popular narrow service bands for 4G/3G/2G, MWT, WiFi, WiMAX, WLAN, and sub-6 GHz 5G wireless communication system. The studied antenna achieved good gain, efficiency and exhibits stable radiation characteristics. Moreover, the antenna does not use any lumped element and left ample space for other circuitries which makes it easier to use in portable devices such as tablets, laptops, etc. with low manufacturing cost.

3.
ScientificWorldJournal ; 2014: 563830, 2014.
Article in English | MEDLINE | ID: mdl-25133245

ABSTRACT

A small antenna with single notch band at 3.5 GHz is designed for ultrawideband (UWB) communication applications. The fabricated antenna comprises a radiating monopole element and a perfectly conducting ground plane with a wide slot. To achieve a notch band at 3.5 GHz, a parasitic element has been inserted in the same plane of the substrate along with the radiating patch. Experimental results shows that, by properly adjusting the position of the parasitic element, the designed antenna can achieve an ultrawide operating band of 3.04 to 11 GHz with a notched band operating at 3.31-3.84 GHz. Moreover, the proposed antenna achieved a good gain except at the notched band and exhibits symmetric radiation patterns throughout the operating band. The prototype of the proposed antenna possesses a very compact size and uses simple structures to attain the stop band characteristic with an aim to lessen the interference between UWB and worldwide interoperability for microwave access (WiMAX) band.


Subject(s)
Microwaves , Wireless Technology/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...