Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(42): 96400-96411, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37572255

ABSTRACT

Titanium dioxide nanotube (TNT) is one of the most widely used photocatalysts. In this research, TNT was prepared by a facile method using ilmenite (FeTiO3) concentrate as the titanium source. For this purpose, iron was leached out from ilmenite using HCl in assistance with the iron powder as the reducing agent to produce pure TiO2, where consequently, TNT was produced through hydrothermal treatment of the prepared TiO2 in an alkaline solution. CuS quantum dots, using the L-cysteine as a linker, were coated on the TNT to improve TNTs' photocatalytic properties. Characterization was done using XRD, SEM, FESEM, HRTEM, FT-IR, nitrogen sorption, and band gap measurement. The results revealed the formation of TNT with a star-shaped macrostructure as well as, a good dispersion of uniform CuS quantum dots with an average diameter of a few nanometers on the TiO2 structure. A dye adsorption kinetics study of the TNT and CuS-dopped TNT showed that TNT carries a higher adsorption capacity compared to the CuS-dopped TNT, developed due to its higher surface area and pore volume. Next, the photocatalytic performance (under visible light) of the prepared composite was studied over the methylene blue (MB) and malachite green (MG) dyes, after the determination of the dye adsorption equilibrium point (where the adsorption stops). TNT showed almost no dye degradation while the prepared composite degraded almost 95 % of the dyes as the result of the reduced band gap from 3.21 to 2.67 eV. In this study, for the first time, the TNT was prepared using a mineral source and ilmenite, enhanced in photocatalytic properties, and presented a successful application.


Subject(s)
Nanoparticles , Nanotubes , Titanium/chemistry , Spectroscopy, Fourier Transform Infrared , Light , Nanotubes/chemistry , Nanoparticles/chemistry , Iron , Coloring Agents , Catalysis
2.
Rev Med Virol ; 32(3): e2305, 2022 05.
Article in English | MEDLINE | ID: mdl-34699647

ABSTRACT

The development of effective and safe COVID-19 vaccines is a major move forward in our global effort to control the SARS-CoV-2 pandemic. The aims of this study were (1) to develop an inactivated whole-virus SARS-CoV-2 candidate vaccine named BIV1-CovIran and (2) to determine the safety and potency of BIV1-CovIran inactivated vaccine candidate against SARS-CoV-2. Infectious virus was isolated from nasopharyngeal swab specimen and propagated in Vero cells with clear cytopathic effects in a biosafety level-3 facility using the World Health Organization's laboratory biosafety guidance related to COVID-19. After characterisation of viral seed stocks, the virus working seed was scaled-up in Vero cells. After chemical inactivation and purification, it was formulated with alum adjuvant. Finally, different animal species were used to determine the toxicity and immunogenicity of the vaccine candidate. The study showed the safety profile in studied animals including guinea pig, rabbit, mice and monkeys. Immunisation at two different doses (3 or 5 µg per dose) elicited a high level of SARS-CoV-2 specific and neutralising antibodies in mice, rabbits and nonhuman primates. Rhesus macaques were immunised with the two-dose schedule of 5 or 3 µg of the BIV1-CovIran vaccine and showed highly efficient protection against 104 TCID50 of SARS-CoV-2 intratracheal challenge compared with the control group. These results highlight the BIV1-CovIran vaccine as a potential candidate to induce a strong and potent immune response that may be a promising and feasible vaccine to protect against SARS-CoV-2 infection.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Vaccine Potency , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Guinea Pigs , Macaca mulatta , Mice , Rabbits , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/immunology , Vero Cells
3.
Environ Res ; 182: 108997, 2020 03.
Article in English | MEDLINE | ID: mdl-31835116

ABSTRACT

Design of experiment and hybrid genetic algorithm optimized multilayer perceptron (GA-MLP) artificial neural network have been employed to model and predict dye decomposition capacity of the biologically synthesized nano CdS diatomite composite. Impact of independent variables such as, light (UV: on-off), solution pH (5-8), composite weight (CW: 0.5-1 mg), initial dye concentration (DC: 10-20 mg/l) and contact time (0-120 min), mainly in two levels, were examined to evaluate dye removal efficiency of the composite. According to the developed response surface based on the factorial design, all independent variables shown positive interactive effect on dye removal (UV > CW > pH > DC), as well as the pH-CW mutual interaction, while both UV-DC and CW-DC had antagonistic effect. The pH-CW interaction was more influential than pH and DC. Incorporation of the intermediate measurements of dye removal between the start and final contact times in GA-MLP approach, had found to improve the accuracy and predictability of the GA-MLP model. Based on the closeness of the R2 (0.98), root mean square error (1.03), variance accounted for (98.23%), mean absolute error (0.61) and model predictive error (9.46%) to their desirable levels, proposed GA-MLP model outperformed the factorial design model. Finally, optimal parameter choice for maximum dye removal using factorial design and GA-MLP were found as: UV (on), pH (9), CW (1 g) and DC (10 mg/l) and UV (on), pH (8.85), CW (0.92 g), DC (12.3 mg/l) and T (117 0.6 min), respectively.


Subject(s)
Diatomaceous Earth , Neural Networks, Computer , Forecasting , Research Design
4.
Iran Biomed J ; 22(1): 22-32, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28646827

ABSTRACT

Background: We have previously reported that immunization with GRA2 antigen of Toxoplasma gondii induces protective immunity in CBA/J (H2k) and BALB/c mice (H2d). We aimed to examine whether immunization of a distinct strain of rodent with recombinant dense granule antigens (GRA2) combined with monophosphorryl lipid A (MPL) adjuvant elicits protective immune response against T. gondii. Methods: C57BL/6 (H2b haplotype) mice were immunized with GRA2, formulated in MPL adjuvant. Results: Strong humoral response, predominantly of IgG1 subclass and cellular response, IFN-γ, was detected at three weeks post immunization. Mice immunized with GRA2 had significantly (p < 0.01) fewer brain cysts than those in the adjuvant group, upon challenge infection. Despite the production of a strong antibody response, IFN-γ production and brain cyst reduction were not significant when the immunized mice were infected four months after the immunization. Conclusion: We can conclude that GRA2 immunization partially protects against T. gondii infection in C57BL/6 mice, though the potency and longevity of this antigen as a standalone vaccine may vary in distinct genetic backgrounds. This observation further emphasizes the utility of GRA2 for incorporation into a multi-antigenic vaccine against T. gondii.

5.
J Biotechnol ; 259: 30-38, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-28827102

ABSTRACT

BACKGROUND: Human fibroblast growth factor-1 (FGF-1) has powerful mitogenic activities in a variety of cell types and plays significant roles in many physiological processes e.g. angiogenesis and wound healing. There is increasing demand for large scale production of recombinant human FGF-1 (rhFGF-1), in order to investigate the potential medical use. In the present study, we explored SHuffle™ T7 strain for production of rhFGF-1. METHODS: A synthetic gene encoding Met-140 amino acid form of human FGF-1 was utilized for expression of the protein in three different E. coli hosts (BL21 (DE3), Rosetta-gami™ 2(DE3), SHuffle™ T7). Total expressions and soluble/insoluble expression ratios of rhFGF-1 in different hosts were analyzed and compared. Soluble rhFGF-1 produced in SHuffle™ T7 cells was purified using one-step heparin-Sepharose affinity chromatography and characterized by a variety of methods for physicochemical and biological properties. RESULTS: The highest level of rhFGF-1 expression and maximum soluble/insoluble ratio were achieved in SHuffle™ T7 strain. Using a single-step heparin-Sepharose chromatography, about 1500mg of purified rhFGF-1 was obtained from one liter of the culture, representing purification yield of ∼70%. The purified protein was reactive toward anti-FGF-1 ployclonal antibody in immunoblotting. Mass spectrometry confirmed the protein had expected amino acid sequence and molecular weight. In reverse-phase high-performance liquid chromatography (RP-HPLC), the protein displayed the same retention time with the human FGF-1 standard, and purity of 94%. Less than 0.3% of the purified protein was comprised of oligomers and/or aggregates as judged by high-performance size-exclusion chromatography (HP-SEC). Secondary and tertiary structures of the protein, investigated by circular dichroism and intrinsic fluorescence spectroscopy methods, respectively, represented native folding of the protein. The purified rhFGF-1 was bioactive and stimulated proliferation of NIH 3T3 cells with EC50 of 0.84ng/mL. CONCLUSION: Although SHuffle™ T7 has been introduced for production of disulfide-bonded proteins in cytoplasm, we herein successfully recruited it for high yield production of soluble and bioactive rhFGF-1, a protein with 3 free cysteine and no disulfide bond. To our knowledge, this is the highest-level of rhFGF-1 expression in E. coli reported so far. Extensive physicochemical and biological analysis showed the protein had similar characteristic to authentic FGF-1.


Subject(s)
Bacteriophage T7/genetics , Fibroblast Growth Factor 1/chemistry , Fibroblast Growth Factor 1/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Animals , Bacteriophage T7/metabolism , Cell Proliferation/drug effects , Escherichia coli/genetics , Fibroblast Growth Factor 1/genetics , Fibroblast Growth Factor 1/pharmacology , Humans , Mice , NIH 3T3 Cells , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...