Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 10(16): 7769-7779, 2018 Apr 26.
Article in English | MEDLINE | ID: mdl-29658555

ABSTRACT

The protection of the viral genome during extracellular transport is an absolute requirement for virus survival and replication. In addition to the almost universal proteinaceous capsids, certain viruses add a membrane layer that encloses their double-stranded (ds) DNA genome within the protein shell. Using the membrane-containing enterobacterial virus PRD1 as a prototype, and a combination of nanoindentation assays by atomic force microscopy and finite element modelling, we show that PRD1 provides a greater stability against mechanical stress than that achieved by the majority of dsDNA icosahedral viruses that lack a membrane. We propose that the combination of a stiff and brittle proteinaceous shell coupled with a soft and compliant membrane vesicle yields a tough composite nanomaterial well-suited to protect the viral DNA during extracellular transport.


Subject(s)
Bacteriophage PRD1/genetics , Capsid , DNA, Viral/genetics , Genome, Viral , Microscopy, Atomic Force , Nanostructures , Virion
2.
Nanoscale ; 8(15): 7933-41, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27006101

ABSTRACT

Immunostimulating reconstituted influenza virosomes (IRIVs) are liposomes with functional viral envelope glycoproteins: influenza virus hemagglutinin (HA) and neuraminidase intercalated in the phospholipid bilayer. Here we address the fusion of IRIVs to artificial supported lipid membranes assembled on polyelectrolyte multilayers on both colloidal particles and planar substrates. The R18 assay is used to prove the IRIV fusion in dependence of pH, temperature and HA concentration. IRIVs display a pH-dependent fusion mechanism, fusing at low pH in analogy to the influenza virus. The pH dependence is confirmed by the Quartz Crystal Microbalance technique. Atomic Force Microscopy imaging shows that at low pH virosomes are integrated in the supported membrane displaying flattened features and a reduced vertical thickness. Virosome fusion offers a new strategy for transferring biological functions on artificial supported membranes with potential applications in targeted delivery and sensing.


Subject(s)
Virosomes/chemistry , Bioengineering , Colloids , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Hydrogen-Ion Concentration , Influenza A Virus, H1N1 Subtype/chemistry , Membrane Fusion , Membrane Lipids/chemistry , Membranes, Artificial , Microscopy, Atomic Force , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Quartz Crystal Microbalance Techniques , Virosomes/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...