Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 196(5): 492, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691228

ABSTRACT

Bisphenol A (BPA) is an essential and extensively utilized chemical compound with significant environmental and public health risks. This review critically assesses the current water purification techniques for BPA removal, emphasizing the efficacy of adsorption technology. Within this context, we probe into the synthesis of magnetic biochar (MBC) using co-precipitation, hydrothermal carbonization, mechanical ball milling, and impregnation pyrolysis as widely applied techniques. Our analysis scrutinizes the strengths and drawbacks of these techniques, with pyrolytic temperature emerging as a critical variable influencing the physicochemical properties and performance of MBC. We explored various modification techniques including oxidation, acid and alkaline modifications, element doping, surface functional modification, nanomaterial loading, and biological alteration, to overcome the drawbacks of pristine MBC, which typically exhibits reduced adsorption performance due to its magnetic medium. These modifications enhance the physicochemical properties of MBC, enabling it to efficiently adsorb contaminants from water. MBC is efficient in the removal of BPA from water. Magnetite and maghemite iron oxides are commonly used in MBC production, with MBC demonstrating effective BPA removal fitting well with Freundlich and Langmuir models. Notably, the pseudo-second-order model accurately describes BPA removal kinetics. Key adsorption mechanisms include pore filling, electrostatic attraction, hydrophobic interactions, hydrogen bonding, π-π interactions, and electron transfer surface interactions. This review provides valuable insights into BPA removal from water using MBC and suggests future research directions for real-world water purification applications.


Subject(s)
Benzhydryl Compounds , Charcoal , Phenols , Wastewater , Water Pollutants, Chemical , Water Purification , Charcoal/chemistry , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/analysis , Phenols/analysis , Phenols/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Wastewater/chemistry , Waste Disposal, Fluid/methods
2.
Polymers (Basel) ; 13(21)2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34771339

ABSTRACT

Recently Bisphenol A (BPA) is one of the persistent trace hazardous estrogenic contaminants in the environment, that can trigger a severe threat to humans and environment even at minuscule concentrations. Thus, this work focused on the synthesis of neat and magnetic biochar (BC) as a sustainable and inexpensive adsorbent to remove BPA from aqueous environment. Novel magnetic biochar was efficiently synthesized by utilizing palm kernel shell, using ferric chloride and ferrous chloride as magnetic medium via chemical co-precipitation technique. In this experimental study, the influence of operating factors comprising contact time (20-240 min), pH (3.0-12.0), adsorbent dose (0.2-0.8 g), and starting concentrations of BPA (8.0-150 ppm) were studied in removing BPA during batch adsorption system using neat biochar and magnetic biochar. It was observed that the magnetically loaded BC demonstrates superior maximum removal efficiency of BPA with 94.2%, over the neat biochar. The functional groups (FTIR), Zeta potential, vibrating sample magnetometer (VSM), surface and textural properties (BET), surface morphology, and mineral constituents (FESEM/EDX), and chemical composition (XRD) of the adsorbents were examined. The experimental results demonstrated that the sorption isotherm and kinetics were suitably described by pseudo-second-order model and Freundlich model, respectively. By studying the adsorption mechanism, it was concluded that π-π electron acceptor-donor interaction (EAD), hydrophobic interaction, and hydrogen bond were the principal drives for the adsorption of BPA onto the neat BC and magnetic BC.

3.
Polymers (Basel) ; 13(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34641045

ABSTRACT

Over the years, the persistent occurrence of superfluous endocrine-disrupting compounds (EDCs) (sub µg L-1) in water has led to serious health disorders in human and aquatic lives, as well as undermined the water quality. At present, there are no generally accepted regulatory discharge limits for the EDCs to avert their possible negative impacts. Moreover, the conventional treatment processes have reportedly failed to remove the persistent EDC pollutants, and this has led researchers to develop alternative treatment methods. Comprehensive information on the recent advances in the existing novel treatment processes and their peculiar limitations is still lacking. In this regard, the various treatment methods for the removal of EDCs are critically studied and reported in this paper. Initially, the occurrences of the EDCs and their attributed effects on humans, aquatic life, and wildlife are systematically reviewed, as well as the applied treatments. The most noticeable advances in the treatment methods include adsorption, catalytic degradation, ozonation, membrane separation, and advanced oxidation processes (AOP), as well as hybrid processes. The recent advances in the treatment technologies available for the elimination of EDCs from various water resources alongside with their associated drawbacks are discussed critically. Besides, the application of hybrid adsorption-membrane treatment using several novel nano-precursors is carefully reviewed. The operating factors influencing the EDCs' remediations via adsorption is also briefly examined. Interestingly, research findings have indicated that some of the contemporary techniques could achieve more than 99% EDCs removal.

4.
Polymers (Basel) ; 13(3)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513670

ABSTRACT

Water is a critical resource necessary for life to be sustained, and its availability should be secured, appropriated, and easily obtainable. The continual detection of endocrine-disrupting chemicals (EDCs) (ng/L or µg/L) in water and wastewater has attracted critical concerns among the regulatory authorities and general public, due to its associated public health, ecological risks, and a threat to global water quality. Presently, there is a lack of stringent discharge standards regulating the emerging multiclass contaminants to obviate its possible undesirable impacts. The conventional treatment processes have reportedly ineffectual in eliminating the persistent EDCs pollutants, necessitating the researchers to develop alternative treatment methods. Occurrences of the EDCs and the attributed effects on humans and the environment are adequately reviewed. It indicated that comprehensive information on the recent advances in the rejection of EDCs via a novel membrane and membrane bioreactor (MBR) treatment techniques are still lacking. This paper critically studies and reports on recent advances in the membrane and MBR treatment methods for removing EDCs, fouling challenges, and its mitigation strategies. The removal mechanisms and the operating factors influencing the EDCs remediation were also examined. Membranes and MBR approaches have proven successful and viable to eliminate various EDCs contaminants.

5.
Materials (Basel) ; 13(20)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081082

ABSTRACT

This study was aimed at fabricating composites of polylactic acid (PLA) matrix-reinforced oil palm empty fruit bunch (OPEFB) fiber filled with chemically reduced graphene oxide (rGO). A total of 2-8 wt.% rGO/OPEFB/PLA composites were characterized for their complex permittivity using an open-ended coaxial probe (OEC) technique. The shielding efficiency properties were calculated using the measured transmission (S21) and the reflection (S11) coefficient results. All the measurements and calculations were performed in the 8-12 GHz frequency range. The morphological and microstructural study included X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and Fourier transform infrared spectroscopy (FTIR). The results indicated that the incorporation of rGO as filler into the composites enhanced their complex permittivity properties. The composites showed a total shielding efficiency (SET) of about 31.2 dB at a frequency range of 8-12 GHz, which suggests their usefulness for microwave absorption.

6.
Materials (Basel) ; 13(20)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066690

ABSTRACT

Oil palm empty fruit bunch (OPEFB) fiber/polylactic acid (PLA)-based composites filled with 6-22 wt.% multi-walled carbon nanotubes (MWCNTs) were prepared using a melt blend method. The composites were analyzed using X-ray diffraction (XRD), Fourier transforms infrared (FTIR), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) of the MWCNTs. The composites were characterized for complex permittivity using the coaxial probe at 8-12 GHz range and the transmission/reflection coefficients were measured through micro strip line. The dielectric permittivity measurements carried out at X-band frequency revealed that 22 wt.% MWCNTs nanocomposite display higher dielectric constant (ε') and dielectric loss (ε″) values of 4.23 and 0.65, respectively. A maximum absorption loss of 15.2 dB was obtained for the 22 wt.% nanocomposites at 11.75 GHz. This result suggests that PLA/OPEFB/MWCNTs composites are a promising cheap and lightweight material for the effective microwave absorption in the X-band frequency range.

SELECTION OF CITATIONS
SEARCH DETAIL
...