Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Environ Manage ; 90(11): 3629-34, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19643526

ABSTRACT

When an explosive detonates or a propellant or flare burns, consumption of the energetic filler should be complete but rarely is, especially in the presence of large amounts of non-combustible materials. Herein we examine three types of perchlorate-containing devices to estimate their potential as sources of contamination in their normal mode of functioning. Road flares, rocket propellants and ammonium nitrate (AN) emulsion explosives are potentially significant anthropogenic sources of perchlorate contamination. This laboratory evaluated perchlorate residue from burning of flares and propellants as well as detonations of ammonium nitrate emulsion explosives. Residual perchlorate in commercial products ranged from 0.094mg perchlorate per gram material (flares) to 0.012mg perchlorate per gram material (AN emulsion explosives). The rocket propellant formulations, prepared in this laboratory, generated 0.014mg of perchlorate residue per gram of material.


Subject(s)
Aerosol Propellants/chemistry , Explosive Agents/chemistry , Perchlorates/chemistry , Transportation , Environmental Monitoring
2.
Biodegradation ; 15(6): 387-94, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15562996

ABSTRACT

The sustainability of biodegradation reactions is of interest at Type 1 chlorinated solvent sites where monitored natural attenuation is being considered as a remedial alternative. Type 1 chlorinated solvent sites are sites undergoing reductive dechlorination where anthropogenic substrates (such as landfill leachate or fermentable organics in the waste materials) ferment to produce hydrogen, a key electron donor. A framework is provided that classifies Type 1 chlorinated solvent sites based on the relative amounts and the depletion rates of the electron donors and the electron acceptors (i.e., chlorinated solvents). Expressions are presented for estimating the total electron donor demand due to the presence of solvents and competing electron acceptors such as dissolved oxygen, nitrate, and sulfate. Finally, a database of 13 chlorinated solvent sites was analyzed to estimate the median and maximum mass discharge rate for dissolved oxygen, nitrate, and sulfate flowing into chlorinated solvent plumes. These values were then used to calculate the amount of hydrogen equivalents and potential for lost perchloroethylene (PCE) biodegradation represented by the inflow of these competing electron acceptors. The median and maximum mass of PCE biodegradation lost due to competing electron acceptors, assuming 100% efficiency, was 226 and 4621 kg year(-1), respectively.


Subject(s)
Biodegradation, Environmental , Hydrocarbons, Chlorinated/metabolism , Solvents/metabolism , Electron Transport , Models, Biological , Tetrachloroethylene/metabolism , Time Factors , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL