Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38070037

ABSTRACT

Commensal microbiome-based health support is gaining respect in the medical community and new human gut-associated Lactic Acid Bacteria (LAB) strains must be evaluated for their probiotic potential. Here we characterized the phenotype and genomes of human ileocecal mucosa-associated LAB strains using metagenomic sequencing and in vitro testing. The strains characterized belonged to the genus Enterococcus (Enterococcus lactis NPL1366, NPL1371, and Enterococcus mundtii NPL1379) and Lactobacillus (Lactobacillus paragasseri, NPL1369, NPL1370, and Lactiplantibacillus plantarum NPL1378). Genome annotation suggested bacterial adaptation to both human physiological and industrial manufacturing-related stressors. Genes for histidine kinases in enterococci and Na + /K + antiporters and F0F1 ATP synthases in Lactobacillus strains may support their tolerance to acid seen in vitro. The bile salt hydrolase (BSH) gene in Lp. plantarum and L. paragasseri may help explain their reported bile salt deconjugation and cholesterol-lowering behavior. Thioredoxin is the principal antioxidant system, and several oxidases and general stress-related proteins are found in lactobacilli, most notably in L. plantarum NPL1378. Multiple adhesion and biofilm-related genes were predicted in the LAB genomes. Adhesion and biofilm-related genes figured prominently in the genomes of enterococcal strains, especially E. lactis, corresponding to its biofilm formation capacity in vitro. Bacteriocin and secondary metabolite biosynthetic gene clusters in the sequenced genomes of E. lactis NPL1366 and Lp. plantarum NPL1378 may explain their in vitro pathogenic antagonism. Moreover, folate producing Lp. plantarum strain holds potential to be used in therapeutics or biofortification of food. All the strains were deemed safe through in vitro and in silico analysis. This basic genetic and phenotypic information supports their contention as probiotic adjuncts to conventional medical therapy.

2.
Arch Microbiol ; 205(5): 176, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37027059

ABSTRACT

The present study was undertaken to isolate bifidobacterial probiotics and characterize the biodiversity of mucosal bacteria in the human distal gut through 16S rRNA amplicon sequencing. Bifidobacterial strains obtained by selective culturing were investigated for biofilms and probiotic characteristics. Both culture-dependent and culture-independent approaches revealed substantial microbial diversity. Bifidobacterium strains yielded robust biofilms with predominantly exopolysaccharides and eDNA matrix. Microscopy revealed species-dependent spatial arrangement of microcolonies. Following probiotic profiling and safety assessment, the inter- and intra-specific interactions in in dual strain bifidobacterial biofilms were studied. As a species, only strains of B. bifidum exhibited exclusively inductive type of interactions whereas in other species, the interactions were more varied. On the other hand, in dual species biofilms, a preponderance of inductive interactions was evident between B. adolescentis, B. thermophilum, B. bifidum, and B. longum. The strong biofilm-formers also diminished pathogenic biofilm viability, and some were proficient in cholesterol removal in vitro. None of the strains exhibited harmful enzymatic activities associated with disease pathology. Interaction between biofilm-forming bifidobacterial strains provides an understanding of their functionality and persistence in the human host, and food or medicine. Their anti-pathogenic activity represents a therapeutic strategy against drug-resistant pathogenic biofilms.


Subject(s)
Bifidobacterium , Probiotics , Humans , Bifidobacterium/genetics , RNA, Ribosomal, 16S/genetics , Dysbiosis , Intestinal Mucosa , Biofilms , Feces/microbiology
4.
Folia Microbiol (Praha) ; 66(3): 411-428, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33566278

ABSTRACT

This study was undertaken to investigate the starter and probiotic potential of lactic acid bacteria isolated from dromedarian camel's milk using both culture-dependent and -independent approaches and metataxonomic analysis. Strains of lactic acid bacteria recovered were examined in vitro for tolerance to gastric acidity, bile, and lysozyme. Bile salt hydrolysis, serum cholesterol-lowering, oxalate degradation, proteolytic activity, exopolysaccharide production, and cell surface characteristics necessary for colonizing intestinal mucosa were also evaluated. A single strain of the species, Lactobacillus fermentum named NPL280, was selected through multivariate analysis as it harbored potential probiotic advantages and fulfilled safety criteria. The strain assimilated cholesterol, degraded oxalate, produced exopolysaccharides, and proved to be a proficient alternate yogurt starter with good viability in stored bio-yogurt. A sensorial analysis of the prepared bio-yogurt was also found to be exemplary. We conclude that the indigenous L. fermentum strain NPL280 has the desired traits of a starter and adjunct probiotic culture for dairy products.


Subject(s)
Limosilactobacillus fermentum , Milk , Probiotics , Animals , Camelus , Limosilactobacillus fermentum/metabolism , Microbiota/physiology , Milk/microbiology , Pakistan , Probiotics/classification , Probiotics/isolation & purification , Probiotics/metabolism , Yogurt/microbiology
5.
J Med Microbiol ; 68(12): 1771-1786, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31613203

ABSTRACT

Introduction. There is an ever present need to isolate and characterize indigenous bacterial strains with potential probiotic health benefits for humans.Aim. Lactobacillus fermentum of dairy origin was focused because of its propensity to adhere to the intestinal glycoprotein, mucin.Methodology. The lactobacillus strains were screened for mucin adhesion, resistance to low pH and bile, autoaggregation, hydrophobicity, and survival in an in vitro digestion model. The cholesterol-lowering and oxalate-degrading effects of selected strains were also determined. Safety was assessed for haemolytic, mucinolytic and gelatinase activity, biogenic amine production, antibiotic resistance and phenol resistance. Expression of the 32-mmub adhesion-related gene was also measured following strain exposure to simulated gastrointestinal tract (GIT) digestion.Results. The selected mucin-adhesive strains were tolerant to acid (pH 3.0) and bile (0.25 %) and demonstrated >85 % survival following simulated human digestion in the presence of milk. The digestive treatment did not affect the adhesive potential of PL20, and PL27, regardless of the food matrix. The simulated digestion had less effect on their adhesion than on the type strain and it also did not correlate with the mmub gene expression level as determined by qPCR. The selected strains exhibited cholesterol removal (36-44 %) and degraded oxalate (66-55 %). Neither of these strains exhibited undesirable characteristics.Conclusion. These preliminary findings suggest a functionality in the two strains of L. fermentum with high colonization potential on GIT mucosal membranes and possible health-promoting effects. This prima facie evidence suggests the need for further studies to test these probiotic candidates as live biotherapeutic agents in vivo.


Subject(s)
Bacterial Adhesion , Dairy Products/microbiology , Digestion , Gastrointestinal Tract/metabolism , Limosilactobacillus fermentum/physiology , Mucins/metabolism , Bile Acids and Salts/pharmacology , Gastric Acidity Determination , Hydrophobic and Hydrophilic Interactions , Limosilactobacillus fermentum/drug effects , Limosilactobacillus fermentum/isolation & purification , Probiotics
6.
FEMS Microbiol Lett ; 366(6)2019 03 01.
Article in English | MEDLINE | ID: mdl-30927413

ABSTRACT

The objective of this study was to investigate biofilm formation by Lactobacillus fermentum under physiologically relevant shear conditions both in the presence and absence of a food matrix and under simulated conditions of digestion. This was done using batch and flow biofilms of L. fermentum strains under conditions simulating digestion in the human gastrointestinal tract and shear flow using a high throughput platform BioFlux 1000Z system. The putative probiotic strain, PL29, was found to be capable of adhesion and biofilm formation in mucin-coated microfluidic channels under liquid flow conditions mimicking those of the GIT. Based on these in vitro measurements, we conclude that L. fermentum strain PL29 could be an effective probiotic for human consumption.


Subject(s)
Biofilms , Gastrointestinal Tract/microbiology , Limosilactobacillus fermentum/physiology , Bacterial Adhesion , Caco-2 Cells , Humans , Models, Biological
7.
Shock ; 46(6): 713-722, 2016 12.
Article in English | MEDLINE | ID: mdl-27405063

ABSTRACT

In male mice, sepsis-induced cardiomyopathy develops as a result of dysregulation of myocardial calcium (Ca) handling, leading to depressed cellular Ca transients (ΔCai). ΔCai depression is partially due to inhibition of sarcoplasmic reticulum Ca ATP-ase (SERCA) via oxidative modifications, which are partially opposed by cGMP generated by the enzyme soluble guanylyl cyclase (sGC). Whether similar mechanisms underlie sepsis-induced cardiomyopathy in female mice is unknown.Male and female C57Bl/6J mice (WT), and mice deficient in the sGC α1 subunit activity (sGCα1), were challenged with lipopolysaccharide (LPS, ip). LPS induced mouse death and cardiomyopathy (manifested as the depression of left ventricular ejection fraction by echocardiography) to a similar degree in WT male, WT female, and sGCα1 male mice, but significantly less in sGCα1 female mice. We measured sarcomere shortening and ΔCai in isolated, externally paced cardiomyocytes, at 37°C. LPS depressed sarcomere shortening in both WT male and female mice. Consistent with previous findings, in male mice, LPS induced a decrease in ΔCai (to 30 ±â€Š2% of baseline) and SERCA inhibition (manifested as the prolongation of the time constant of Ca decay, τCa, to 150 ±â€Š5% of baseline). In contrast, in female mice, the depression of sarcomere shortening induced by LPS occurred in the absence of any change in ΔCai, or SERCA activity. This suggested that, in female mice, the causative mechanism lies downstream of the Ca transients, such as a decrease in myofilament sensitivity for Ca. The depression of sarcomere shortening shortening after LPS was less severe in female sGCα1 mice than in WT female mice, indicating that cGMP partially mediates cardiomyocyte dysfunction.These results suggest, therefore, that LPS-induced cardiomyopathy develops through distinct sex-specific myocardial mechanisms. While in males LPS induces sGC-independent decrease in ΔCai, in female mice LPS acts downstream of ΔCai, possibly via sGC-dependent myofilament dysfunction.


Subject(s)
Cardiomyopathies/metabolism , Sepsis/metabolism , Animals , Calcium/metabolism , Cardiomyopathies/etiology , Echocardiography , Endotoxemia/metabolism , Female , Guanylate Cyclase/metabolism , Male , Mice , Mice, Inbred C57BL , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sepsis/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...