Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36296481

ABSTRACT

Plants of the genus Strobilanthes have notable use in folklore medicines as well as being used for pharmacological purposes. The present work explored the biological predispositions of Strobilanthes glutinosus and attempted to accomplish a comprehensive chemical profile through GC-MS of different fractions concerning polarity (chloroform and n-butanol) and LC-ESI-MS of methanolic extract by both positive and negative ionization modes. The biological characteristics such as antioxidant potential were assessed by applying six different methods. The potential for clinically relevant enzyme (α-amylase, α-glucosidase, and tyrosinase) inhibition was examined. The DPPH, ABTS, CUPRAC, and FRAP results revealed that the methanol fraction presented efficient results. The phosphomolybdenum assay revealed that the n-hexane fraction showed the most efficient results, while maximum metal chelation potential was observed for the chloroform fraction. The GC-MS profiling of n-butanol and chloroform fractions revealed the existence of several (110) important compounds presenting different classes (fatty acids, phenols, alkanes, monoterpenes, diterpenes, sesquiterpenoids, and sterols), while LC-ESI-MS tentatively identified the presence of 44 clinically important secondary metabolites. The n-hexane fraction exhibited the highest potential against α-amylase (497.98 mm ACAE/g extract) and α-glucosidase (605.85 mm ACAE/g extract). Significant inhibitory activity against tyrosinase enzyme was displayed by fraction. Six of the prevailing compounds from the GC-MS study (lupeol, beta-amyrin, stigmasterol, gamma sitosterol, 9,12-octadecadienoic acid, and n-hexadecanoic acid) were modelled against α-glucosidase and α-amylase enzymes along with a comparison of binding affinity to standard acarbose, while three compounds identified through LC-ESI-MS were docked to the mushroom tyrosinase enzyme and presented with significant biding affinities. Thus, it is assumed that S. glutinosus demonstrated effective antioxidant and enzyme inhibition prospects with effective bioactive molecules, potentially opening the door to a new application in the field of medicine.


Subject(s)
Plants, Medicinal , Plants, Medicinal/chemistry , Antioxidants/chemistry , Monophenol Monooxygenase , Sitosterols , Methanol/chemistry , alpha-Glucosidases , Gas Chromatography-Mass Spectrometry , Chloroform , Acarbose , 1-Butanol , Stigmasterol , Palmitic Acid , Linoleic Acid , Plant Extracts/pharmacology , Plant Extracts/chemistry , Enzyme Inhibitors/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phenols/analysis , alpha-Amylases , Monoterpenes , Alkanes
2.
Crit Rev Food Sci Nutr ; 58(3): 486-511, 2018 Feb 11.
Article in English | MEDLINE | ID: mdl-27437876

ABSTRACT

Synthetic preservatives are widely used by the food industry to control the growth of spoilage and pathogenic microorganisms and to inhibit the process of lipid oxidation extending the shelf-life, quality and safety of food products. However, consumer's preference for natural food additives and concern regarding the safety of synthetic preservatives prompted the food industry to look for natural alternatives. Natural antimicrobials, including plant extracts and their essential oils, enzymes, peptides, bacteriocins, bacteriophages, and fermented ingredients have all been shown to have the potential for use as alternatives to chemical antimicrobials. Some spices, herbs and other plant extracts were also reported to be strong antioxidants. The antimicrobial/antioxidant activities of some plant extracts and/or their essential oils are mainly due to the presence of some major bioactive compounds, including phenolic acids, terpenes, aldehydes, and flavonoids. The proposed mechanisms of action of these natural preservatives are reported. An overview of the research done on the direct incorporation of natural preservatives agents into meat and poultry products as well as fruit and vegetables to extend their shelf-life is presented. The development of edible packaging materials containing natural preservatives is growing and their applications in selected food products are also presented in this review.


Subject(s)
Anti-Infective Agents/chemistry , Antioxidants/chemistry , Fruit/chemistry , Meat/analysis , Poultry Products/analysis , Vegetables/chemistry , Animals , Humans
3.
Biosci Biotechnol Biochem ; 80(11): 2184-2191, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27586439

ABSTRACT

The presence of selected dehydrogenases, including alcohol dehydrogenase (ADH-YL) and aldehyde dehydrogenase (ALDH-YL), in Yarrowia lipolytica JMY 861, and their potential role in flavor synthesis were investigated. The experimental findings showed that using reduced form of nicotinamide adenine dinucleotide (NADH) as cofactor, the ADH-YL activity in vitro was 6-fold higher than that with reduced form of nicotinamide adenine dinucleotide phosphate (NADPH); however, under the experimental conditions used in this study, an ALDH-YL activity was not detected. The in situ hexanal reduction reaction was found to be instantaneous; however, when the yeast cells suspension was diluted 150 times, the initial relative hexanal concentration was increased by 84.1%. The chromatographic analyses indicated the conversion, in situ, of linoleic acid hydroperoxides (HPODs) into volatile C6-compounds after 60 min of HPODs addition to the yeast cells suspension.

4.
Int J Food Sci ; 2015: 594238, 2015.
Article in English | MEDLINE | ID: mdl-26904663

ABSTRACT

Commercial lipases, from porcine pancreas (PPL), Candida rugosa (CRL), and Thermomyces lanuginosus (Lipozyme TL IM), were investigated in terms of their efficiency for the hydrolysis of safflower oil (SO) for the liberation of free linoleic acid (LA), used as a flavor precursor. Although PPL, under the optimized conditions, showed a high degree of hydrolysis (91.6%), its low tolerance towards higher substrate concentrations could limit its use for SO hydrolysis. In comparison to the other investigated lipases, Lipozyme TL IM required higher amount of enzyme and an additional 3 h of reaction time to achieve its maximum degree of SO hydrolysis (90.2%). On the basis of the experimental findings, CRL was selected as the most appropriate biocatalyst, with 84.1% degree of hydrolysis. The chromatographic analyses showed that the CRL-hydrolyzed SO is composed mainly of free LA.

SELECTION OF CITATIONS
SEARCH DETAIL
...