Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Syst ; 48(1): 10, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38193948

ABSTRACT

Gene expression datasets offer a wide range of information about various biological processes. However, it is difficult to find the important genes among the high-dimensional biological data due to the existence of redundant and unimportant ones. Numerous Feature Selection (FS) techniques have been created to get beyond this obstacle. Improving the efficacy and precision of FS methodologies is crucial in order to identify significant genes amongst complicated complex biological data. In this work, we present a novel approach to gene selection called the Sine Cosine and Cuckoo Search Algorithm (SCACSA). This hybrid method is designed to work with well-known machine learning classifiers Support Vector Machine (SVM). Using a dataset on breast cancer, the hybrid gene selection algorithm's performance is carefully assessed and compared to other feature selection methods. To improve the quality of the feature set, we use minimum Redundancy Maximum Relevance (mRMR) as a filtering strategy in the first step. The hybrid SCACSA method is then used to enhance and optimize the gene selection procedure. Lastly, we classify the dataset according to the chosen genes by using the SVM classifier. Given the pivotal role gene selection plays in unraveling complex biological datasets, SCACSA stands out as an invaluable tool for the classification of cancer datasets. The findings help medical practitioners make well-informed decisions about cancer diagnosis and provide them with a valuable tool for navigating the complex world of gene expression data.


Subject(s)
Algorithms , Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Health Personnel , Machine Learning , Support Vector Machine
2.
BMC Bioinformatics ; 24(1): 479, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102551

ABSTRACT

Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical treatments of cancer. Mostly cancer datasets contain various gene expression levels as features with less samples, so firstly there is a need to eliminate similar features to permit faster convergence rate of classification algorithms. These features (genes) enable us to identify cancer disease, choose the best prescription to prevent cancer and discover deviations amid different techniques. To resolve this problem, we proposed a hybrid novel technique CSSMO-based gene selection for cancer classification. First, we made alteration of the fitness of spider monkey optimization (SMO) with cuckoo search algorithm (CSA) algorithm viz., CSSMO for feature selection, which helps to combine the benefit of both metaheuristic algorithms to discover a subset of genes which helps to predict a cancer disease in early stage. Further, to enhance the accuracy of the CSSMO algorithm, we choose a cleaning process, minimum redundancy maximum relevance (mRMR) to lessen the gene expression of cancer datasets. Next, these subsets of genes are classified using deep learning (DL) to identify different groups or classes related to a particular cancer disease. Eight different benchmark microarray gene expression datasets of cancer have been utilized to analyze the performance of the proposed approach with different evaluation matrix such as recall, precision, F1-score, and confusion matrix. The proposed gene selection method with DL achieves much better classification accuracy than other existing DL and machine learning classification models with all large gene expression dataset of cancer.


Subject(s)
Algorithms , Neoplasms , Humans , Microarray Analysis , Neoplasms/genetics , Genetic Techniques , Machine Learning
3.
Chem Biodivers ; 20(8): e202201123, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37394680

ABSTRACT

The most significant groupings of cold-blooded creatures are the fish family. It is crucial to recognize and categorize the most significant species of fish since various species of seafood diseases and decay exhibit different symptoms. Systems based on enhanced deep learning can replace the area's currently cumbersome and sluggish traditional approaches. Although it seems straightforward, classifying fish images is a complex procedure. In addition, the scientific study of population distribution and geographic patterns is important for advancing the field's present advancements. The goal of the proposed work is to identify the best performing strategy using cutting-edge computer vision, the Chaotic Oppositional Based Whale Optimization Algorithm (CO-WOA), and data mining techniques. Performance comparisons with leading models, such as Convolutional Neural Networks (CNN) and VGG-19, are made to confirm the applicability of the suggested method. The suggested feature extraction approach with Proposed Deep Learning Model was used in the research, yielding accuracy rates of 100 %. The performance was also compared to cutting-edge image processing models with an accuracy of 98.48 %, 98.58 %, 99.04 %, 98.44 %, 99.18 % and 99.63 % such as Convolutional Neural Networks, ResNet150V2, DenseNet, Visual Geometry Group-19, Inception V3, Xception. Using an empirical method leveraging artificial neural networks, the Proposed Deep Learning model was shown to be the best model.


Subject(s)
Deep Learning , Animals , Whales , Algorithms , Neural Networks, Computer , Image Processing, Computer-Assisted/methods
4.
J Comput Biol ; 29(6): 565-584, 2022 06.
Article in English | MEDLINE | ID: mdl-35527646

ABSTRACT

The design of an optimal framework for the prediction of cancer from high-dimensional and imbalanced microarray data is a challenging job in the fields of bioinformatics and machine learning. There are so many techniques for dimensionality reduction, but it is unclear which of these techniques performs best with different classifiers and datasets. This article focused on the independent component analysis (ICA) features (genes) extraction method for Naïve Bayes (NB) classification of microarray data, because ICA perfectly takes out an independent component from the datasets that satisfy the classification criteria of the NB classifier. A novel hybrid method based on a nature-inspired metaheuristic algorithm is proposed in this article for resolving optimization problems of ICA extracted genes. The cuckoo search (CS) algorithm and artificial bee colony (ABC) for finding the best subset of features to increase the performance of ICA for the NB classifier is designed and executed. According to our investigation, the CS-ABC with ICA was implemented for the first time to resolve the dimensionality reduction problem in high-dimensional microarray biomedical datasets. The CS algorithm improved the local search process of the ABC algorithm, and then the hybrid algorithm CS-ABC provided better optimal gene sets that improved the classification accuracy of the NB classifier. The experimental comparison shows that the CS-ABC approach with the ICA algorithm performs a deeper search in the iterative process, which can avoid premature convergence and produce better results compared with the previously published feature selection algorithm for the NB classifier.


Subject(s)
Algorithms , Neoplasms , Animals , Bayes Theorem , Computational Biology , Machine Learning , Neoplasms/genetics
5.
Med Biol Eng Comput ; 60(6): 1627-1646, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35399141

ABSTRACT

Identifying a small subset of informative genes from a gene expression dataset is an important process for sample classification in the fields of bioinformatics and machine learning. In this process, there are two objectives: first, to minimize the number of selected genes, and second, to maximize the classification accuracy of the used classifier. In this paper, a hybrid machine learning framework based on a nature-inspired cuckoo search (CS) algorithm has been proposed to resolve this problem. The proposed framework is obtained by incorporating the cuckoo search (CS) algorithm with an artificial bee colony (ABC) in the exploitation and exploration of the genetic algorithm (GA). These strategies are used to maintain an appropriate balance between the exploitation and exploration phases of the ABC and GA algorithms in the search process. In preprocessing, the independent component analysis (ICA) method extracts the important genes from the dataset. Then, the proposed gene selection algorithms along with the Naive Bayes (NB) classifier and leave-one-out cross-validation (LOOCV) have been applied to find a small set of informative genes that maximize the classification accuracy. To conduct a comprehensive performance study, proposed algorithms have been applied on six benchmark datasets of gene expression. The experimental comparison shows that the proposed framework (ICA and CS-based hybrid algorithm with NB classifier) performs a deeper search in the iterative process, which can avoid premature convergence and produce better results compared to the previously published feature selection algorithm for the NB classifier.


Subject(s)
Algorithms , Computational Biology , Bayes Theorem , Machine Learning , Microarray Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...