Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Dent Res ; 10(2): e876, 2024 04.
Article in English | MEDLINE | ID: mdl-38506322

ABSTRACT

OBJECTIVES: This study evaluated the remineralization potential of calcium sodium phosphosilicate and functionalized tri-calcium phosphate (f-TCP) dentifrices in deeper incipient carious lesions (ICLs). MATERIALS AND METHODS: Artificial ICLs were created by placing premolars into demineralizing solutions. Teeth were randomly assigned into four groups: calcium sodium phosphosilicate (Group 1), f-TCP (Group 2), 1450 ppm fluoride (Group 3), and distilled water (Group 4), which were subjected to 10-day pH cycling. Mineral density (MD) was assessed using microcomputed tomography (Micro-CT), while hardness (H) and elastic modulus (EM) were assessed using nanomechanical testing. RESULTS: MD % gain was higher in Groups 1-3 than in Group 4. In addition, Groups 1 and 2 exhibited significantly higher MD % gain than Group 3. Also, Groups 1-3 showed significantly higher EM and H values than Group 4 in the outer enamel area; yet, Groups 1 and 2 displayed significantly higher EM and H values than Groups 3 and 4 in the inner enamel. CONCLUSIONS: The MD, EM, and H of ICLs significantly increased with the addition of calcium sodium phosphosilicate or f-TCP to fluoridated dentifrices compared to standard fluoride dentifrices. The added active ingredients remineralized the deeper parts of the ICLs, while remineralization at the lesion surface was similar between tested dentifrices.


Subject(s)
Dental Caries , Dentifrices , Fluorine Compounds , Humans , Fluorides , Cariostatic Agents , Dentifrices/pharmacology , Calcium , X-Ray Microtomography , Calcium Phosphates , Minerals , Sodium
2.
J Oral Sci ; 65(1): 20-23, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36436976

ABSTRACT

PURPOSE: To investigate the mineral density and lesion depth of artificial caries lesions on aprismatic enamel and prismatic enamel created by lactic acid and acetic acid buffers. METHODS: Forty bovine enamel blocks were allocated to: aprismatic enamel (Group A) and prismatic enamel (Group C) in acetic acid buffer for 192 h and aprismatic enamel (Group B) and prismatic enamel (Group D) in lactic acid buffer for 96 h. The mineral loss and lesion depth were measured using micro-computed tomography. RESULTS: A significant difference (P = 0.01) was observed in the mineral loss (%) in the lesions on aprismatic enamel and prismatic enamel treated with lactic acid buffer while no significant difference (P = 0.51) was observed in the mineral loss (%) in the lesions on aprismatic enamel and prismatic enamel treated with acetic acid buffer. No significant difference was noted in the mean lesion depth of lesions on aprismatic enamel and prismatic enamel treated with acetic acid and lactic acid buffers (P > 0.05). CONCLUSION: Aprismatic enamel and prismatic enamel have similar mineral loss in acetic acid while prismatic enamel showed more mineral loss compared to aprismatic enamel in lactic acid.


Subject(s)
Dental Caries , Tooth Demineralization , Animals , Cattle , Dental Caries Susceptibility , Models, Chemical , X-Ray Microtomography , Dental Caries/pathology , Dental Enamel/pathology , Acetic Acid , Minerals , Lactic Acid , Tooth Demineralization/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...