Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Biobehav Rev ; 158: 105544, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38220034

ABSTRACT

Response inhibition is classically investigated using the go/no-go (GNGT) and stop-signal task (SST), which conceptually measure different subprocesses of inhibition. Further, different task versions with varying levels of additional executive control demands exist, making it difficult to identify the core neural correlates of response inhibition independent of variations in task complexity. Using neuroimaging meta-analyses, we show that a divergent pattern of regions is consistently involved in the GNGT versus SST, arguing for different mechanisms involved when performing the two tasks. Further, for the GNGT a strong effect of task complexity was found, with regions of the multiple demand network (MDN) consistently involved particularly in the complex GNGT. In contrast, both standard and complex SST recruited the MDN to a similar degree. These results complement behavioral evidence suggesting that inhibitory control becomes automatic after some practice and is performed without input of higher control regions in the classic, standard GNGT, but continues to be implemented in a top-down controlled fashion in the SST.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Humans , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Executive Function/physiology , Inhibition, Psychological , Neural Networks, Computer , Reaction Time/physiology
2.
Eur Radiol Exp ; 8(1): 6, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38191821

ABSTRACT

BACKGROUND: Previous studies on magnetic resonance neurography (MRN) found different patterns of structural nerve damage in type 1 diabetes (T1D) and type 2 diabetes (T2D). Magnetization transfer ratio (MTR) is a quantitative technique to analyze the macromolecular tissue composition. We compared MTR values of the sciatic nerve in patients with T1D, T2D, and healthy controls (HC). METHODS: 3-T MRN of the right sciatic nerve at thigh level was performed in 14 HC, 10 patients with T1D (3 with diabetic neuropathy), and 28 patients with T2D (10 with diabetic neuropathy). Results were subsequently correlated with clinical and electrophysiological data. RESULTS: The sciatic nerve's MTR was lower in patients with T2D (0.211 ± 0.07, mean ± standard deviation) compared to patients with T1D (T1D 0.285 ± 0.03; p = 0.015) and HC (0.269 ± 0.05; p = 0.039). In patients with T1D, sciatic MTR correlated positively with tibial nerve conduction velocity (NCV; r = 0.71; p = 0.021) and negatively with hemoglobin A1c (r = - 0.63; p < 0.050). In patients with T2D, we found negative correlations of sciatic nerve's MTR peroneal NCV (r = - 0.44; p = 0.031) which remained significant after partial correlation analysis controlled for age and body mass index (r = 0.51; p = 0.016). CONCLUSIONS: Lower MTR values of the sciatic nerve in T2D compared to T1D and HC and diametrical correlations of MTR values with NCV in T1D and T2D indicate that there are different macromolecular changes and pathophysiological pathways underlying the development of neuropathic nerve damage in T1D and T2D. TRIAL REGISTRATION: https://classic. CLINICALTRIALS: gov/ct2/show/NCT03022721 . 16 January 2017. RELEVANCE STATEMENT: Magnetization transfer ratio imaging may serve as a non-invasive imaging method to monitor the diseases progress and to encode the pathophysiology of nerve damage in patients with type 1 and type 2 diabetes. KEY POINTS: • Magnetization transfer imaging detects distinct macromolecular nerve lesion patterns in diabetes patients. • Magnetization transfer ratio was lower in type 2 diabetes compared to type 1 diabetes. • Different pathophysiological mechanisms drive nerve damage in type 1 and 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Humans , Diabetes Mellitus, Type 2/diagnostic imaging , Diabetes Mellitus, Type 1/diagnostic imaging , Diabetic Neuropathies/diagnostic imaging , Sciatic Nerve/diagnostic imaging , Thigh
3.
Clin Neuroradiol ; 34(1): 55-66, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37548682

ABSTRACT

INTRODUCTION/AIMS: Diabetic small fiber neuropathy (SFN) is caused by damage to thinly myelinated A­fibers (δ) and unmyelinated C­fibers. This study aimed to assess associations between quantitative sensory testing (QST) and parameters of peripheral nerve perfusion obtained from dynamic contrast enhanced (DCE) magnetic resonance neurography (MRN) in type 2 diabetes patients with and without SFN. METHODS: A total of 18 patients with type 2 diabetes (T2D, 8 with SFN, 10 without SFN) and 10 healthy controls (HC) took part in this cross-sectional single-center study and underwent QST of the right leg and DCE-MRN of the right thigh with subsequent calculation of the sciatic nerve constant of capillary permeability (Ktrans), extravascular extracellular volume fraction (Ve), and plasma volume fraction (Vp). RESULTS: The Ktrans (HC 0.031 min-1 ± 0.009, T2D 0.043 min-1 ± 0.015; p = 0.033) and Ve (HC 1.2% ± 1.5, T2D: 4.1% ± 5.1; p = 0.027) were lower in T2D patients compared to controls. In T2D patients, compound z­scores of thermal and mechanical detection correlated with Ktrans (r = 0.73; p = 0.001, and r = 0.57; p = 0.018, respectively) and Ve (r = 0.67; p = 0.002, and r = 0.69; p = 0.003, respectively). Compound z­scores of thermal pain and Vp (r = -0.57; p = 0.015) correlated negatively. DISCUSSION: The findings suggest that parameters of peripheral nerve microcirculation are related to different symptoms in SFN: A reduced capillary permeability may result in a loss of function related to insufficient nutritional supply, whereas increased capillary permeability may be accompanied by painful symptoms related to a gain of function.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Cross-Sectional Studies , Pain/complications , Sciatic Nerve , Perfusion , Magnetic Resonance Spectroscopy , Magnetic Resonance Imaging
4.
Diabetologia ; 67(2): 275-289, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38019287

ABSTRACT

AIMS/HYPOTHESIS: Quantitative sensory testing (QST) allows the identification of individuals with rapid progression of diabetic sensorimotor polyneuropathy (DSPN) based on certain sensory phenotypes. Hence, the aim of this study was to investigate the relationship of these phenotypes with the structural integrity of the sciatic nerve among individuals with type 2 diabetes. METHODS: Seventy-six individuals with type 2 diabetes took part in this cross-sectional study and underwent QST of the right foot and high-resolution magnetic resonance neurography including diffusion tensor imaging of the right distal sciatic nerve to determine the sciatic nerve fractional anisotropy (FA) and cross-sectional area (CSA), both of which serve as markers of structural integrity of peripheral nerves. Participants were then assigned to four sensory phenotypes (participants with type 2 diabetes and healthy sensory profile [HSP], thermal hyperalgesia [TH], mechanical hyperalgesia [MH], sensory loss [SL]) by a standardised sorting algorithm based on QST. RESULTS: Objective neurological deficits showed a gradual increase across HSP, TH, MH and SL groups, being higher in MH compared with HSP and in SL compared with HSP and TH. The number of participants categorised as HSP, TH, MH and SL was 16, 24, 17 and 19, respectively. There was a gradual decrease of the sciatic nerve's FA (HSP 0.444, TH 0.437, MH 0.395, SL 0.382; p=0.005) and increase of CSA (HSP 21.7, TH 21.5, MH 25.9, SL 25.8 mm2; p=0.011) across the four phenotypes. Further, MH and SL were associated with a lower sciatic FA (MH unstandardised regression coefficient [B]=-0.048 [95% CI -0.091, -0.006], p=0.027; SL B=-0.062 [95% CI -0.103, -0.020], p=0.004) and CSA (MH ß=4.3 [95% CI 0.5, 8.0], p=0.028; SL B=4.0 [95% CI 0.4, 7.7], p=0.032) in a multivariable regression analysis. The sciatic FA correlated negatively with the sciatic CSA (r=-0.35, p=0.002) and markers of microvascular damage (high-sensitivity troponin T, urine albumin/creatinine ratio). CONCLUSIONS/INTERPRETATION: The most severe sensory phenotypes of DSPN (MH and SL) showed diminishing sciatic nerve structural integrity indexed by lower FA, likely representing progressive axonal loss, as well as increasing CSA of the sciatic nerve, which cannot be detected in individuals with TH. Individuals with type 2 diabetes may experience a predefined cascade of nerve fibre damage in the course of the disease, from healthy to TH, to MH and finally SL, while structural changes in the proximal nerve seem to precede the sensory loss of peripheral nerves and indicate potential targets for the prevention of end-stage DSPN. TRIAL REGISTRATION: ClinicalTrials.gov NCT03022721.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Humans , Diffusion Tensor Imaging/methods , Cross-Sectional Studies , Sciatic Nerve , Phenotype
5.
J Clin Endocrinol Metab ; 109(1): e137-e144, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37579325

ABSTRACT

CONTEXT: Insulin-mediated microvascular permeability and blood flow of skeletal muscle appears to be altered in the condition of insulin resistance. Previous studies on this effect used invasive procedures in humans or animals. OBJECTIVE: The aim of this study was to demonstrate the feasibility of a noninvasive assessment of human muscle microcirculation via dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) of skeletal muscle in patients with type 2 diabetes (T2D). METHODS: A total of 56 participants (46 with T2D, 10 healthy controls [HC]) underwent DCE-MRI of the right thigh at 3 Tesla. The constant of the musculature's microvascular permeability (Ktrans), extravascular extracellular volume fraction (ve), and plasma volume fraction (vp) were calculated. RESULTS: In T2D patients, skeletal muscle Ktrans was lower (HC 0.0677 ± 0.002 min-1, T2D 0.0664 ± 0.002 min-1; P = 0.042) while the homeostasis model assessment (HOMA) index was higher in patients with T2D compared to HC (HC 2.72 ± 2.2, T2D 6.11 ± 6.2; P = .011). In T2D, Ktrans correlated negatively with insulin (r = -0.39, P = .018) and HOMA index (r = -0.38, P = .020). CONCLUSION: The results signify that skeletal muscle DCE-MRI can be employed as a noninvasive technique for the assessment of muscle microcirculation in T2D. Our findings suggest that microvascular permeability of skeletal muscle is lowered in patients with T2D and that a decrease in microvascular permeability is associated with insulin resistance. These results are of interest with regard to the impact of muscle perfusion on diabetic complications such as diabetic sarcopenia.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Insulins , Humans , Capillary Permeability , Contrast Media , Magnetic Resonance Imaging/methods , Muscle, Skeletal/diagnostic imaging , Thigh
SELECTION OF CITATIONS
SEARCH DETAIL
...