Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 13(1): 19144, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37932358

ABSTRACT

In recent years, due to the dramatic increase of the bacteria resistance to antibiotics and chemotherapeutic drugs, an increasing importance is given to the discovery of novel bioactive molecules, more potent than those in use. In this contest, methanol extracts of different parts of the medicinal plant Limoniastrum monopetalum (L.) Boiss. (Plumbaginaceae), widely occurring in Tunisia, were prepared to evaluate the antimicrobial and antiproliferative activities. The methanol extract of the roots showed the highest antibacterial activity against E. coli, S. aureus and E. faecalis, whereas the stem extract exhibited the highest antiproliferative effects towards a Hela cell line. Analysis of volatile fractions, using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detector (GC-FID) techniques, led to the identification of camphor as the most abundant constituent, which represented from 84.85 to 99.48% of the methanol extracts. Multiple chromatographic separation of the methanol leaf extract afforded the flavonoid maeopsin-6-O-glucoside (S1) and a few fractions that were subjected to biological activity assays. One fraction exhibited interesting antibacterial activity against E. coli and E. faecalis (MIC values of 62.5 and 78.12 µg/mL, respectively), and antiproliferative effects against Hela and A549 cells (IC50 = 226 and 242.52 µg/mL, respectively). In addition, in silico studies indicated that maesopsin-6-O-glucoside, which was moderately active against Staphylococcus aureus, strongly interacted with the active site of the accessory gene regulator protein A (AgrA) of Staphylococcus aureus.


Subject(s)
Flavonoids , Plumbaginaceae , Humans , Flavonoids/pharmacology , Methanol/pharmacology , Plant Extracts/pharmacology , HeLa Cells , Staphylococcus aureus , Escherichia coli , Gas Chromatography-Mass Spectrometry , Anti-Bacterial Agents/pharmacology , Phytochemicals/pharmacology , Antioxidants/pharmacology
3.
Mar Drugs ; 21(10)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37888471

ABSTRACT

Bacterial resistance to different antimicrobial agents is growing with alarming speed, especially when bacterial cells are living in biofilm. Hybrid nanoparticles, synthesized through the green method, hold promise as a potential solution to this challenge. In this study, 66 actinomycete strains were isolated from three distinct marine sources: marine sediment, the algae Codium bursa, and the marine sponge Chondrosia reniformis. From the entirety of the isolated strains, one strain, S26, identified as Saccharopolyspora erythrea, was selected based on its taxonomic position and significant antimicrobial activity. Using the biomass of the selected marine Actinobacteria, the green synthesis of eco-friendly silver carbonate nanoparticles (BioAg2CO3NPs) is reported for the first time in this pioneering study. The BioAg2CO3NPs were characterized using different spectroscopic and microscopic analyses; the synthesized BioAg2CO3NPs primarily exhibit a triangular shape, with an approximate size of 100 nm. Biological activity evaluation indicated that the BioAg2CO3NPs exhibited good antimicrobial activity against all tested microorganisms and were able to remove 58% of the biofilm formed by the Klebsiella pneumoniae kp6 strain.


Subject(s)
Actinobacteria , Anti-Infective Agents , Metal Nanoparticles , Actinobacteria/chemistry , Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Bacteria , Biofilms , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...