Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 105(3): L032604, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35428062

ABSTRACT

We report an observation of a temperature-controlled reentrant transition in simulations of mixtures of small and big particles interacting via a soft repulsive potential in two dimensions. As temperature increases, the system passes from a fluid mixture, to a crystal of big particles in a fluid of small particles, and back to a fluid mixture. Solidification is driven by entropy gain of small particles which overcomes the free-energy cost of confining big ones. Melting results from enhanced interpenetration of particles at high temperature which reduces the entropic forces that stabilize the crystal.

2.
Entropy (Basel) ; 22(5)2020 May 19.
Article in English | MEDLINE | ID: mdl-33286344

ABSTRACT

We use Langevin dynamics simulations to study dense 2d systems of particles with both size and energy polydispersity. We compare two types of bidisperse systems which differ in the correlation between particle size and interaction parameters: in one system big particles have high interaction parameters and small particles have low interaction parameters, while in the other system the situation is reversed. We study the different phases of the two systems and compare them to those of a system with size but not energy bidispersity. We show that, depending on the strength of interaction between big and small particles, cooling to low temperatures yields either homogeneous glasses or mosaic crystals. We find that systems with low mixing interaction, undergo partial freezing of one of the components at intermediate temperatures, and that while this phenomenon is energy-driven in both size and energy bidisperse systems, it is controlled by entropic effects in systems with size bidispersity only.

3.
J Chem Phys ; 150(13): 134502, 2019 Apr 07.
Article in English | MEDLINE | ID: mdl-30954053

ABSTRACT

We use Langevin dynamics simulations to study dense two-dimensional systems of particles where all binary interactions are different in the sense that each interaction parameter is characterized by a randomly chosen number. We compare two systems that differ by the probability distributions from which the interaction parameters are drawn: uniform (U) and exponential (E). Both systems undergo neighborhood identity ordering and form metastable clusters in the fluid phase near the liquid-solid transition, but the effects are much stronger in E than in U systems. Possible implications of our results for the control of the structure of multicomponent alloys are discussed.

4.
J Chem Phys ; 148(10): 104304, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29544331

ABSTRACT

We use Langevin dynamics simulations to study the growth kinetics and the steady-state properties of condensed clusters in a dilute two-dimensional system of particles that are all different (APD) in the sense that each particle is characterized by a randomly chosen interaction parameter. The growth exponents, the transition temperatures, and the steady-state properties of the clusters and of the surrounding gas phase are obtained and compared with those of one-component systems. We investigate the fractionation phenomenon, i.e., how particles of different identities are distributed between the coexisting mother (gas) and daughter (clusters) phases. We study the local organization of particles inside clusters, according to their identity-neighbourhood identity ordering (NIO)-and compare the results with those of previous studies of NIO in dense APD systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...