Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Semin Hear ; 44(4): 394-411, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37818149

ABSTRACT

Noise-induced hearing loss (NIHL) continues to be a pervasive problem for the nation's workforce, particularly the nation's mining personnel. As one of the leading health and safety organizations in the world, the National Institute for Occupational Health and Safety (NIOSH) in Pittsburgh maintains a Hearing Loss Prevention Program (HLPP) to conduct research to reduce NIHL loss among the nation's miners. This document provides a brief overview of this HLPP, describing some of the research techniques involved in the development of engineering noise controls, methods for the development of administrative noise controls, and some of the products available to the public to protect the nation's workers hearing.

2.
Min Metall Explor ; 39(2): 467-483, 2022.
Article in English | MEDLINE | ID: mdl-35836427

ABSTRACT

Repeated noise exposure and occupational hearing loss are common health problems across industries and especially within the mining industry. Large mechanized processes, blasting, grinding, drilling, and work that is often in close quarters put many miners at an increased risk of noise overexposure. In stone, sand, and gravel mining, noise is generated from a variety of sources, depending on the type of ore being mined as well as the final consumer product provided by that mine. Depending on the source of noise generation, different strategies to reduce and avoid that noise should be implemented. The National Institute for Occupational Safety and Health (NIOSH) has evaluated the noise profile at three operational surface stone, sand, and gravel mines. A-weighted sound level meter data as well as phase array beamforming data were collected throughout the mines in areas with high noise exposure or high personnel foot or vehicle traffic. Sound level meter data collected on a grid pattern was used to develop sound profiles of the working areas. These sound contour maps as well as phase array beamforming plots were provided to the mines as well as guidance to modify work areas or personnel traffic to reduce noise exposure.

3.
Int J Audiol ; 58(11): 761-768, 2019 11.
Article in English | MEDLINE | ID: mdl-31282793

ABSTRACT

Objective: To evaluate the hearing loss risk in different sectors and subunits in the mining industry and to identify associated occupations, in an attempt to locate gaps between hearing conservation efforts and hearing loss risks.Design: Descriptive statistics and frequency tables were generated by commodity types, subunit operations, and/or occupations. Temporal trends of the incidences of hearing loss were reported by commodity types.Study Sample: The MSHA Accident/Injury/Illness and MSHA Address/Employment databases from 2000 to 2014 were used.Results: Incidence rate of OHL was reported highest in the coal sector compared to other commodity types. Those members of the workforce that entered the mining industry after the year 2000 accounted for 6.5% and 19.0% of the total hearing loss records for coal and non-coal, respectively. High-risk occupations found in all three commodity sectors (coal; stone, sand, and gravel; and metal/non-metal) were electrician/helper/wireman, mechanic/repairman/helper, bulldozer/tractor operator, and truck driver.Conclusion: Hearing loss risks were not uniform across mining sectors, subunit operations, and occupations. In addition to the continuous efforts of implementing engineering controls to reduce machinery sound level exposure for operators, a multi-level approach may benefit those occupations with a more dynamic exposure profile - e.g., labour/utilityman/bullgang, electrician/helper/wireman, and mechanic/repairman/helper.


Subject(s)
Hearing Loss, Noise-Induced/etiology , Mining , Occupational Diseases/etiology , Occupational Exposure/analysis , Risk Assessment/methods , Adolescent , Adult , Aged , Female , Hearing Loss, Noise-Induced/epidemiology , Hearing Tests , Humans , Incidence , Male , Middle Aged , Noise, Occupational/adverse effects , Occupational Diseases/epidemiology , Occupational Exposure/adverse effects , Occupations , Young Adult
4.
Am J Ind Med ; 62(10): 826-837, 2019 10.
Article in English | MEDLINE | ID: mdl-31347715

ABSTRACT

BACKGROUND: The purpose of this study was to estimate the prevalence of hearing loss (HL) among noise-exposed US workers within the Mining, and Oil and Gas Extraction (OGE) sectors. METHODS: Audiograms of 1.9 million workers across all industries (including 9389 in Mining and 1076 in OGE) from 2006 to 2015 were examined. Prevalence and adjusted risk as compared to a reference industry (Couriers and Messengers) were estimated for all industries combined and the Mining and OGE sectors and subsectors. RESULTS: The prevalences of HL in Mining and OGE were 24% and 14%, respectively, compared with 16% for all industries combined. Many Mining and one OGE subsector exceeded these prevalences and most had an adjusted risk (prevalence ratio) significantly greater than the reference industry. Some subsectors, particularly in OGE, could not be examined due to low sample size. The prevalences in Construction Sand and Gravel Mining and Natural Gas Liquid Extraction were 36% and 28%, respectively. Workers within Support Activities for Coal Mining had double the risk of HL than workers in the reference industry. CONCLUSIONS: The many subsectors identified with high prevalences and/or worker risks for HL well above risks in the reference industry need critical attention to conserve worker hearing and maintain worker quality of life. Administrative and engineering controls can reduce worker hazardous noise exposures. Noise and ototoxic chemical exposure information is needed for many subsectors, as is audiometric testing results for OGE workers. Additional research is also needed to further characterize exposures and improve hearing conservation measures.


Subject(s)
Hearing Loss, Noise-Induced/epidemiology , Mining/statistics & numerical data , Occupational Diseases/epidemiology , Oil and Gas Industry/statistics & numerical data , Adult , Audiometry , Female , Hearing Loss, Noise-Induced/etiology , Humans , Male , Middle Aged , Noise, Occupational/adverse effects , Occupational Diseases/etiology , Occupational Exposure/adverse effects , Prevalence , Retrospective Studies , United States/epidemiology
5.
Noise Control Eng J ; 67(1): 23-30, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-35923643

ABSTRACT

Many mobile sound measurement applications (apps) have been developed to take advantage of the built-in or fit-in sensors of the smartphone. One of the concerns is the accuracy of these apps when compared to professional sound measurement instruments. Previously, a research team from the National Institute for Occupational Safety and Health (NIOSH) developed the NIOSH Sound Level Meter (SLM) app for iOS smart devices. The team found the average accuracy of this app to be within ±1 dBA when using calibrated external microphones with a type 1 reference device and measuring pink noise at levels from 65 to 95 dBA in 5-dBA increments. The studies were conducted in a reverberant noise chamber at the NIOSH Acoustics Laboratory in Cincinnati. However, it is still unknown how this app performs in measuring industrial/mining sound levels outside of a controlled laboratory environment. The current NIOSH study evaluates the NIOSH SLM app to measure sound levels from a jumbo drill (a large mining machine). The study was conducted in a hemi-anechoic chamber at the NIOSH Pittsburgh Mining Research Division and followed by a field evaluation in an underground metal mine. Six different iOS smart devices were used with two types of external microphones chosen from previous studies to measure sound levels during jumbo drill operations, and the results were compared with a reference device. Results show that the average sound levels measured by the NIOSH SLM app are within ±1 dBA of the reference device both in the laboratory and field. However, the type of operation being performed, the selection and use of external microphones, distance from a noise source, and environmental factors (e.g., air movement) may all influence the accuracy of the app's performance. Although additional validation is still needed, the results from this study suggest a potential for using the NIOSH SLM app, with calibrated external microphones, to measure sound levels in mining operations.

6.
J Occup Environ Hyg ; 15(3): 246-262, 2018 03.
Article in English | MEDLINE | ID: mdl-29200378

ABSTRACT

A new noise regulation for the mining industry became effective in 2000, providing a consistent regulatory requirement for both coal and non-coal mining divisions. The new rule required mines to implement hearing conservation programs, including a system of continuous noise monitoring, provision of hearing protection devices, audiometric testing, hearing loss training, and record keeping. The goal of this study was to assess hearing conservation program compliance, and excessive noise exposure and hearing loss risks for both coal and non-coal mining divisions through evaluating MSHA citations. We analyzed 13,446 MSHA citations from 2000-2014 pertinent to 30 CFR Part 62. Descriptive statistics were generated and comparisons were made among mines of different commodities. In addition, one-way ANOVA on ranks was conducted to estimate the correlation between excess risks and establishment size. Results showed that 25.6% of coal mines and 14.7% of non-coal mines were cited at least once during this period of time. Larger numbers of noncompliance were seen in stone, sand, and gravel mines (SSG). Results also suggested inadequate efforts in both audiometric testing and minimizing risk after excessive noise exposure. Finally, establishment size of mine was correlated with the increasing risk of noncompliance. We anticipate that this study can guide resource allocation for preventing noise-induced hearing loss, and help improve risk management in mining.


Subject(s)
Hearing Loss, Noise-Induced/epidemiology , Hearing Loss, Noise-Induced/prevention & control , Mining/statistics & numerical data , Coal Mining/legislation & jurisprudence , Coal Mining/statistics & numerical data , Ear Protective Devices/statistics & numerical data , Hearing Tests/statistics & numerical data , Humans , Mining/legislation & jurisprudence , Noise, Occupational/adverse effects , Noise, Occupational/prevention & control , Occupational Exposure/prevention & control , Occupational Exposure/statistics & numerical data , Occupational Health/statistics & numerical data , United States/epidemiology
7.
Noise Control Eng J ; 64(5): 573-585, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-28260833

ABSTRACT

Noise-induced hearing loss is the second most pervasive disease in the mining industry. The exposure of miners to noise levels above the permissible exposure level results in hearing loss of approximately 80% of coal miners by retirement age. In addition, between 2002 and 2011, approximately 48% of longwall shearer operators were overexposed in coal mines in the United States. Previous research identified the two rotating cutting drums used by the longwall shearer to extract coal as the most significant sound-radiating components. In this context, the National Institute for Occupational Safety and Health conducted research to develop noise controls for longwall mining systems. To this end, structural and acoustic numerical models of a single cutting drum were developed to assess its dynamic and acoustic response, respectively. Once validated, these models were used to explore various noise control concepts including force isolation, varying structural damping and varying component stiffness. Upon multiple simulations, it was determined that structural modifications to increase the stiffness of the outer vane plates were the most practical and durable approach to reduce the sound radiated by the cutting drums. Furthermore, these modifications did not adversely affect the cutting performance, nor the loading ability of the drums. As a result, these structural modifications were implemented into an actual set of drums for evaluation purposes. Results from the underground evaluation, when the modified cutting drums were used under normal operation conditions, showed noise reduction across the entire frequency spectrum with an overall noise reduction of 3 dB in the sound pressure level at the operator location, confirming the validity of the developed noise controls.

SELECTION OF CITATIONS
SEARCH DETAIL
...