Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Appl Microbiol ; 69(5): 278-286, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-37612074

ABSTRACT

Biological pretreatment using microbial enzymes appears to be the most promising pre-treatment technology for the breakdown of recalcitrant lignin structure. This research focuses on the identification and characterization of lignin-depolymerizing enzymes in Bacillus subtilis strain S11Y, previously isolated from palm oil wastes in Malaysia. The draft genome sequences of this highly lignin-depolymerizing strain revealed that the genome lacked any of the well-known dye-decolorizing peroxidase or catalase-peroxidase that are commonly reported to be involved in lignin depolymerization by bacteria, indicating that strain S11Y has distinct sets of potential lignin depolymerization genes. The oxidative stress-related enzymes Cu/Zn type-superoxide dismutase (Sod2) and a heme-containing monofunctional catalase (Kat2) were identified in the genome sequences that are of interest. Their lignin-depolymerizing ability were evaluated by treating Alkali lignin (AL) with each enzyme and their degradation ability were evaluated using gel-permeation chromatography (GPC), ultrahigh-pressure liquid chromatography-mass spectrometry (UHPLC/MS), and gas chromatography-mass spectrometry (GC/MS), which successfully proved lignin depolymerizing ability. Successful evaluation of lignin depolymerizing enzymes can be applicable for lignin pretreatment process in green energy production and generation of valuable chemicals in bio-refinery.


Subject(s)
Bacillus subtilis , Lignin , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Catalase , Lignin/metabolism , Malaysia , Peroxidases
2.
Bioresour Technol ; 279: 174-180, 2019 May.
Article in English | MEDLINE | ID: mdl-30721818

ABSTRACT

Previous studies on screening of lignin-degrading bacteria mainly focused on the ligninolytic ability of the isolated bacteria for the utilization of lignin monomers. In this study, we focused on the depolymerization of alkali lignin to prove the ability of the isolated thermophilic bacterial strains to utilize and depolymerize more than a monomer of alkali lignin within 7 days of incubation. Indigenous thermophilic bacterial isolates from the palm oil plantation were used to evaluate the depolymerization and utilization of alkali lignin. The confirmation of the bacterium-mediated depolymerization of oil palm empty fruit bunch was achieved through the removal of silica bodies, as observed with scanning electron microscopy. Stenotrophomonas sp. S2 and Bacillus subtilis S11Y were able to reduce approximately 50% and 20% of alkali lignin at 7 days of incubation without the requirement for additional carbon sources.


Subject(s)
Lignin/metabolism , Palm Oil/metabolism , Fruit/metabolism , Polymerization , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...