Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Pharm Sci ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38761864

ABSTRACT

Dengue, caused by the dengue virus (DENV), is a prevalent arthropod-borne disease in humans and poses a significant burden on public health. Severe cases of dengue can be life-threatening. Although a licensed dengue vaccine is available, its efficacy varies across different virus serotypes and may exacerbate the disease in some seronegative recipients. Developing a safe and effective vaccine against all DENV serotypes remains challenging and requires continued research. Conventional approaches in dengue vaccine development, using live or attenuated microorganisms or parts of them often contain unnecessary epitopes, risking allergenic or autoimmune reactions. To address these challenges, innovative strategies such as peptide vaccines have been explored. Peptide vaccines offer a safer alternative by inducing specific immune responses with minimal immunogenic fragments. Chemical modification strategies of peptides have revolutionized their design, allowing for the incorporation of multi-epitope presentation, self-adjuvanting features, and self-assembling properties. These modifications enhance the antigenicity of the peptides, leading to improved vaccine efficacy. This review outlines advancements in peptide-based dengue vaccine development, leveraging nanoparticles as antigen-displaying platforms. Additionally, key immunological considerations for enhancing efficacy and safety against DENV infection have been addressed, providing insight into the next-generation of dengue vaccine development leveraging on peptide-nanoparticle technology.

2.
AAPS PharmSciTech ; 25(5): 110, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740721

ABSTRACT

Antimicrobial peptide LL37 is a promising antibacterial candidate due to its potent antimicrobial activity with no known bacterial resistance. However, intrinsically LL37 is susceptible to degradation in wound fluids limits its effectiveness. Bacterial toxins which are released after cell lysis are found to hinder wound healing. To address these challenges, encapsulating LL37 in microspheres (MS) and loading the MS onto activated carbon (AC)-chitosan (CS) hydrogel. This advanced wound dressing not only protects LL37 from degradation but also targets bacterial toxins, aiding in the healing of chronic wound infections. First, LL37 MS and LL37-AC-CS hydrogel were prepared and characterised in terms of physicochemical properties, drug release, and peptide-polymer compatibility. Antibacterial and antibiofilm activity, bacterial toxin elimination, cell migration, and cell cytotoxicity activities were investigated. LL37-AC-CS hydrogel was effective against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. LL37-AC-CS hydrogel bound more endotoxin than AC with CS hydrogel alone. The hydrogel also induced cell migration after 72 h and showed no cytotoxicity towards NHDF after 72 h of treatment. In conclusion, the LL37-AC-CS hydrogel was shown to be a stable, non-toxic advanced wound dressing method with enhanced antimicrobial and antitoxin activity, and it can potentially be applied to chronic wound infections to accelerate wound healing.


Subject(s)
Anti-Bacterial Agents , Bandages , Chitosan , Escherichia coli , Hydrogels , Microspheres , Pseudomonas aeruginosa , Staphylococcus aureus , Chitosan/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Staphylococcus aureus/drug effects , Humans , Pseudomonas aeruginosa/drug effects , Escherichia coli/drug effects , Wound Healing/drug effects , Wound Infection/drug therapy , Wound Infection/microbiology , Wound Infection/prevention & control , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/administration & dosage , Cathelicidins , Microbial Sensitivity Tests/methods , Bacterial Toxins , Drug Liberation , Cell Movement/drug effects , Carbon/chemistry , Biofilms/drug effects
3.
Vaccines (Basel) ; 11(9)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37766182

ABSTRACT

Recently, a great effort has been devoted to studying attenuated and subunit vaccine development against SARS-CoV-2 since its outbreak in December 2019. It is known that diverse virus-like particles (VLPs) are extensively employed as carriers to display various antigenic and immunostimulatory cargo modules for vaccine development. Single or multiple antigens or antigenic domains such as the spike or nucleocapsid protein or their variants from SARS-CoV-2 could also be incorporated into VLPs via either a genetic or chemical display approach. Such antigen display platforms would help screen safer and more effective vaccine candidates capable of generating a strong immune response with or without adjuvant. This review aims to provide valuable insights for the future development of SARS-CoV-2 VLP vaccines by summarizing the latest updates and perspectives on the vaccine development of VLP platforms for genetic and chemical displaying antigens from SARS-CoV-2.

4.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37513835

ABSTRACT

Breast cancer is considered the second-leading cancer after lung cancer and is the most prevalent cancer among women globally. Currently, cancer immunotherapy via vaccine has gained great attention due to specific and targeted immune cell activity that creates a potent immune response, thus providing long-lasting protection against the disease. Despite peptides being very susceptible to enzymatic degradation and poor immunogenicity, they can be easily customized with selected epitopes to induce a specific immune response and particulate with carriers to improve their delivery and thus overcome their weaknesses. With advances in nanotechnology, the peptide-based vaccine could incorporate other components, thereby modulating the immune system response against breast cancer. Considering that peptide-based vaccines seem to show remarkably promising outcomes against cancer, this review focuses on and provides a specific view of peptide-based vaccines used against breast cancer. Here, we discuss the benefits associated with a peptide-based vaccine, which can be a mainstay in the prevention and recurrence of breast cancer. Additionally, we also report the results of recent trials as well as plausible prospects for nanotechnology against breast cancer.

5.
Gels ; 9(7)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37504441

ABSTRACT

The challenges of using VEGF to promote osteoblastic differentiation include a short half-life and a narrow therapeutic window. A carrier system combining hydrogel and liposomes may improve the therapeutic efficacy of VEGF for bone regeneration. This study aimed to investigate the effects of delivery of VEGF via liposomal hydrogel on the osteogenesis of MG-63 cells. Liposomal hydrogel scaffold was fabricated and then characterized in terms of the morphological and chemical properties using FESEM and FTIR. In 2.5D analysis, the MG-63 cells were cultured on liposomal hydrogel + VEGF as the test group. The osteogenic effects of VEGF were compared with the control groups, i.e., hydrogel without liposomes + VEGF, osteogenic medium (OM) supplemented with a bolus of VEGF, and OM without VEGF. Cell morphology, viability, and differentiation and mineralization potential were investigated using FESEM, MTT assay, ALP activity, and Alizarin red staining. The characterization of scaffold showed no significant differences in the morphological and chemical properties between hydrogel with and without liposomes (p > 0.05). The final 2.5D culture demonstrated that cell proliferation, differentiation, and mineralization were significantly enhanced in the liposomal hydrogel + VEGF group compared with the control groups (p < 0.05). In conclusion, liposomal hydrogel can be used to deliver VEGF in a sustained manner in order to enhance the osteogenesis of MG-63 cells.

6.
Asian J Pharm Sci ; 17(3): 435-446, 2022 May.
Article in English | MEDLINE | ID: mdl-35782331

ABSTRACT

An effective vaccine against group A streptococcus (GAS) is highly desirable for definitive control of GAS infections. In the present study, two variants of amphiphilic chitosan nanoparticles-based GAS vaccines were developed. The vaccines were primarily composed of encapsulated KLH protein (a source of T helper cell epitopes) and lipidated M-protein derived B cell peptide epitope (lipoJ14) within the amphiphilic structure of nanoparticles. The only difference between them was one of the nanoparticles vaccines received additional surface coating with poly (I:C). The formulated vaccines exhibited nanosized particles within the range of 220-240 nm. Cellular uptake study showed that nanoparticles vaccine without additional poly (I:C) coating has greater uptake by dendritic cells and macrophages compared to nanoparticles vaccine that was functionalized with poly (I:C). Both vaccines were found to be safe in mice and showed negligible cytotoxicity against HEK293 cells. Upon immunization in mice, both nanoparticle vaccines produced high antigen-specific antibodies titres that were regulated by a balanced Th1 and Th2 response compared to physical mixture. These antibodies elicited high opsonic activity against the tested GAS strains. Overall, our data demonstrated that amphiphilic chitosan nanoparticles platform induced a potent immune response even without additional inclusion of poly (I:C).

7.
Pharmaceutics ; 14(1)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35057051

ABSTRACT

Dengue remains a severe threat to public health. The safety and efficacy of the licensed dengue vaccine is not clinically satisfactory, which necessitate the need of new approach in designing an effective dengue vaccine without eliciting adverse reaction. Herein, we have designed a lipidated multi-epitope peptide vaccine (LipoDV) that can elicit highly targeted humoral and cell-mediated immune responses. To improve its immunogenicity, LipoDV was presented on the surface of MPLA-functionalized polymersome nanoparticles (PNs-LipoDV-MPLA). The as-constructed vaccine delivery platform resembles the structural morphology of DENV owing to its spherical nanoscale particle size and surface immunostimulatory properties given by LipoDV and MPLA that emulating the functional role of DENV E and prM/M proteins respectively. A proof-of-concept study demonstrated that BALB/c mice immunized with PNs-LipoDV-MPLA induced a stronger antigen-specific antibody response with an enhanced cell-mediated immunity as characterized by the elevated IFN-γ secretion in comparison to other tested vaccine candidates which possess a lesser structural trait of DENV. The DENV-mimicking nanoparticles vaccine exhibited negligible toxicity as analyzed by hemolytic test, MTT assay, histopathological examination and abnormal toxicity test on immunized mice. Collectively, our study provides a strong foundation in designing an effective peptide-based vaccine delivery platform against DENV infection.

8.
Cancers (Basel) ; 13(19)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34638441

ABSTRACT

Breast cancer is the most common invasive cancer diagnosed among women. A cancer vaccine has been recognized as a form of immunotherapy with a prominent position in the prevention and treatment of breast cancer. The majority of current breast cancer vaccination strategies aim to stimulate antitumor T-cell responses of the HER2/neu oncogene, which is abnormally expressed in breast cancer cells. However, the role of the B-cell humoral response is often underappreciated in the cancer vaccine design. We have advanced this idea by elucidating the role of B-cells in cancer vaccination by designing a chimeric antigenic peptide possessing both cytotoxic T lymphocytes (GP2) and B-cell (P4) peptide epitopes derived from HER2/neu. The chimeric peptide (GP2-P4) was further conjugated to a carrier protein (KLH), forming a KLH-GP2-P4 conjugate. The immunogenicity of KLH-GP2-P4 was compared with KLH-GP2 (lacking the B-cell epitope) in BALB/c mice. Mice immunized with KLH-GP2-P4 elicited more potent antigen-specific neutralizing antibodies against syngeneic TUBO cells (cancer cell line overexpressing HER2/neu) that was governed by a balanced Th1/Th2 polarization in comparison to KLH-GP2. Subsequently, these immune responses led to greater inhibition of tumor growth and longer survival in TUBO tumor-bearing mice in both prophylactic and therapeutic challenge experiments. Overall, our data demonstrated that the B-cell epitope has a profound effect in orchestrating an efficacious antitumor immunity. Thus, a multi-epitope peptide vaccine encompassing cytotoxic T-lymphocytes, T-helper and B-cell epitopes represents a promising strategy in developing cancer vaccines with a preventive and therapeutic modality for the effective management of breast cancer.

9.
Antibiotics (Basel) ; 10(8)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34439018

ABSTRACT

Streptomyces sp. has been known to be a major antibiotic producer since the 1940s. As the number of cases related to resistance pathogens infection increases yearly, discovering the biosynthesis pathways of antibiotic has become important. In this study, we present the streamline of a project report summary; the genome data and metabolome data of newly isolated Streptomyces SUK 48 strain are also analyzed. The antibacterial activity of its crude extract is also determined. To obtain genome data, the genomic DNA of SUK 48 was extracted using a commercial kit (Promega) and sent for sequencing (Pac Biosciences technology platform, Menlo Park, CA, USA). The raw data were assembled and polished using Hierarchical Genome Assembly Process 4.0 (HGAP 4.0). The assembled data were structurally predicted using tRNAscan-SE and rnammer. Then, the data were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) database and antiSMASH analysis. Meanwhile, the metabolite profile of SUK 48 was determined using liquid chromatography-mass spectrophotometry (LC-MS) for both negative and positive modes. The results showed that the presence of kanamycin and gentamicin, as well as the other 11 antibiotics. Nevertheless, the biosynthesis pathways of aurantioclavine were also found. The cytotoxicity activity showed IC50 value was at 0.35 ± 1.35 mg/mL on the cell viability of HEK 293. In conclusion, Streptomyces sp. SUK 48 has proven to be a non-toxic antibiotic producer such as auranticlavine and gentamicin.

10.
Mol Pharm ; 18(5): 1956-1969, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33822631

ABSTRACT

Gelatin hydrogels are attractive for wound applications owing to their well-defined structural, physical, and chemical properties as well as good cell adhesion and biocompatibility. This study aimed to develop gelatin hydrogels incorporated with bio-nanosilver functionalized with lactoferrin (Ag-LTF) as a dual-antimicrobial action dressing, to be used in treating infected wounds. The hydrogels were cross-linked using genipin prior to loading with Ag-LTF and characterized for their physical and swelling properties, rheology, polymer and actives interactions, and in vitro release of the actives. The hydrogel's anti-biofilm and antibacterial performances against S. aureus and P. aeruginosa as well as their cytotoxicity effects were assessed in vitro, including primary wound healing gene expression of human dermal fibroblasts (HDFs). The formulated hydrogels showed adequate release of AgNPs and LTF, with promising antimicrobial effects against both bacterial strains. The Ag-LTF-loaded hydrogel did not significantly interfere with the normal cellular functions as no alteration was detected for cell viability, migration rate, and expression of the target genes, suggesting the nontoxicity of Ag-LTF as well as the hydrogels. In conclusion, Ag-LTF-loaded genipin-cross-linked gelatin hydrogel was successfully synthesized as a new approach for fighting biofilms in infected wounds, which may be applied to accelerate healing of chronic wounds.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Bandages , Hydrogels/chemistry , Silver/administration & dosage , Wound Infection/prevention & control , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Biofilms/drug effects , Drug Liberation , Fibroblasts , Gelatin/chemistry , Gelatin/toxicity , Humans , Hydrogels/toxicity , Lactoferrin/chemistry , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Silver/chemistry , Silver/pharmacokinetics , Staphylococcus aureus/drug effects , Toxicity Tests, Acute , Wound Healing/drug effects , Wound Infection/microbiology
11.
Carbohydr Polym ; 254: 117299, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33357867

ABSTRACT

Naturally derived antimicrobial peptides (AMPs) are an attractive source of new antimicrobial agents. However, clinical application of AMPs is associated with poor bioavailability and toxicity. In this study, we address these limitations by designing a new series of chitosan derivatives to mimic the amphiphilic topology of AMPs. The synthesized chitosan derivatives were found to self-assemble into nanoparticles in the aqueous environment. Among the compounds, a chitosan derivative grafted with arginine and oleic acid (CH-Arg-OA) exhibited the most potent antimicrobial activity, especially against Gram-negative bacteria. It also caused minimal cell death when tested in HEK293 and HepG2 cell lines, thus confirming the role of cationicity and lipophilicity for selective bacteria targeting. CH-Arg-OA exhibited its antimicrobial activity by disrupting bacterial membranes and causing the leakage of cytoplasmic contents. Thus, amphiphilic chitosan nanoparticles offer a great promise as a new class of AMPs mimics that is effective against Gram-negative bacteria.


Subject(s)
Anti-Bacterial Agents/chemistry , Arginine/chemistry , Biomimetic Materials/chemistry , Chitosan/chemistry , Nanoparticles/chemistry , Oleic Acid/chemistry , Surface-Active Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Bacterial Outer Membrane/drug effects , Biomimetics/methods , Carbodiimides/chemistry , Cell Survival/drug effects , Erythrocytes/drug effects , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/metabolism , HEK293 Cells , Hemolysis/drug effects , Hep G2 Cells , Humans , Microbial Sensitivity Tests
12.
RSC Adv ; 10(9): 4969-4983, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-35498291

ABSTRACT

Hybrid nanoparticles designed to exert multiple mechanisms of antibacterial action offer a new approach to the fight against pathogenic resistant bacteria. In this study, nanomaterials with the dual actions of antibacterial and anti-biofilm activities were developed using silver nanoparticles (AgNPs) functionalized with either lactoferrin (LTF) or graphene oxide (GO). AgNPs were synthesized using mushroom waste as a reducing agent and chitosan (CS) as a stabilizing agent, prior to their surface functionalization with either GO (AgGO) or LTF (Ag-LTF). The AgNPs exhibited a surface plasmon resonance (SPR) band at 430 nm, as determined by UV-vis spectroscopy, whereas the absorption of AgGO and Ag-LTF occurred at 402 and 441 nm, respectively. Particle size analysis of AgNPs, AgGO, and Ag-LTF revealed sizes of 121.5 ± 10.5, 354.0 ± 1.6, and 130.8 ± 1.2 nm, respectively. All AgNPs, Ag-LTF, and AgGO inhibited selected Gram-positive bacteria and Gram-negative bacteria with comparable antibacterial performance, as determined by the agar diffusion method. Despite the absence of antibacterial activity by GO and LTF, a synergistic effect of AgGO and Ag-LTF was observed as they had a greater activity against P. aeruginosa. Moreover, Ag-LTF did not affect cell viability and migration rate of cells, suggesting the non-toxicity of Ag-LTF. In conclusion, AgNPs, Ag-LTF, and AgGO possess antibacterial activity, which may offer an alternative for future antibacterial agents.

13.
Curr Drug Deliv ; 17(2): 88-100, 2020.
Article in English | MEDLINE | ID: mdl-31880259

ABSTRACT

Fast progress in nanoscience and nanotechnology has contributed to the way in which people diagnose, combat, and overcome various diseases differently from the conventional methods. Metal nanoparticles, mainly silver and gold nanoparticles (AgNPs and AuNPs, respectively), are currently developed for many applications in the medical and pharmaceutical area including as antibacterial, antibiofilm as well as anti-leshmanial agents, drug delivery systems, diagnostics tools, as well as being included in personal care products and cosmetics. In this review, the preparation of AgNPs and AuNPs using different methods is discussed, particularly the green or bio- synthesis method as well as common methods used for their physical and chemical characterization. In addition, the mechanisms of the antimicrobial and anti-biofilm activity of AgNPs and AuNPs are discussed, along with the toxicity of both nanoparticles. The review will provide insight into the potential of biosynthesized AgNPs and AuNPs as antimicrobial nanomaterial agents for future use.


Subject(s)
Anti-Bacterial Agents , Gold , Metal Nanoparticles , Silver , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Biofilms/drug effects , Gold/administration & dosage , Gold/chemistry , Gold/toxicity , Humans , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Silver/administration & dosage , Silver/chemistry , Silver/toxicity
14.
ACS Med Chem Lett ; 8(2): 227-232, 2017 Feb 09.
Article in English | MEDLINE | ID: mdl-28197317

ABSTRACT

Safe immunostimulants (adjuvants) are essential for the development of highly potent peptide-based vaccines. This study examined for the first time whether fluorinated lipids could stimulate humoral immunity in vivo when conjugated to peptide antigen. The impact of fluorination on humoral immunity was tested using a library of peptide-based vaccine candidates against the group A streptococcus (GAS). The fluorinated constructs stimulated similar mouse IgG titers to those elicited by complete Freund's adjuvant (CFA) and were higher than those produced in mice that received the nonfluorinated constructs.

15.
Curr Med Chem ; 23(41): 4610-4624, 2016.
Article in English | MEDLINE | ID: mdl-27570165

ABSTRACT

Virtually every living organism produces gene-encoded antimicrobial peptides (AMPs) that provide an immediate defence against pathogen invasion. Many AMPs have been isolated and used as antibiotics that are effective against multidrug-resistant bacteria. Although encouraging, AMPs have such poor drug-like properties that their application for clinical use is restricted. In turn, this has diverted research to the development of synthetic molecules that retain the therapeutic efficacy of AMPs but are endowed with greater biological stability and safety profiles. Most of the synthetic molecules, either based on a peptidic or non-peptidic scaffold, have been designed to mimic the amphiphilic properties of native AMPs, which are widely believed to be the key determinant of their antibacterial activity. In this review, the structural, chemical and biophysical features that govern the biological activities of various synthetic designs are discussed extensively. Recent innovative approaches from the literature that exhibit novel concepts towards the development of new synthetic antibacterial agents, including the engineered delivery platform incorporated with AMP mimetics, are also emphasised.


Subject(s)
Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Drug Design , Peptidomimetics/chemistry , Polymers/chemistry , Amino Acid Sequence , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/pharmacology , Bacteria/drug effects , Bacterial Infections/drug therapy , Biomimetic Materials/chemical synthesis , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Biomimetics/methods , Humans , Peptidomimetics/chemical synthesis , Peptidomimetics/pharmacology , Polymers/chemical synthesis , Polymers/pharmacology
16.
Bioorg Med Chem ; 24(10): 2235-41, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27048775

ABSTRACT

The spread of drug-resistant bacteria has imparted a sense of urgency in the search for new antibiotics. In an effort to develop a new generation of antibacterial agents, we have designed de novo charged lipopeptides inspired by natural antimicrobial peptides. These short lipopeptides are composed of cationic lysine and hydrophobic lipoamino acids that replicate the amphiphilic properties of natural antimicrobial peptides. The resultant lipopeptides were found to self-assemble into nanoparticles. Some were effective against a variety of Gram-positive bacteria, including strains resistant to methicillin, daptomycin and/or vancomycin. The lipopeptides were not toxic to human kidney and liver cell lines and were highly resistant to tryptic degradation. Transmission electron microscopy analysis of bacteria cells treated with lipopeptide showed membrane-damage and lysis with extrusion of cytosolic contents. With such properties in mind, these lipopeptides have the potential to be developed as new antibacterial agents against drug-resistant Gram-positive bacteria.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria/drug effects , Lipopeptides/chemistry , Lipopeptides/pharmacology , Cell Line , Drug Design , Gram-Positive Bacterial Infections/drug therapy , Humans , Microbial Sensitivity Tests
17.
Nanomedicine (Lond) ; 10(22): 3359-71, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26909416

ABSTRACT

AIM: To explore the potential of de novo designed cyclic lipopeptides and its linear counterparts as antibacterial agents. MATERIALS & METHODS: The lipopeptides were synthesized via solid-phase peptide synthesis and the cyclization was achieved by using succinic acid linker. The antimicrobial activities of the lipopeptides were evaluated in vitro against a variety selection of Gram-negative and Gram-positive bacteria including clinical isolates of multidrug-resistant strains. RESULTS: The synthesized lipopeptides were able to self-assemble into nanoparticles in an aqueous environment, with three exhibiting potent antibacterial activity against Gram-positive bacteria, including clinically relevant multidrug-resistant bacteria. CONCLUSION: The lead compounds have the potential to be developed as new antibacterials that are effective against Gram-positive bacteria, including multidrug-resistant isolates.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Gram-Positive Bacteria/drug effects , Lipopeptides/administration & dosage , Lipopeptides/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Hemolysis/drug effects , Hep G2 Cells , Humans , Lipopeptides/chemical synthesis , Lipopeptides/ultrastructure , Microbial Sensitivity Tests , Microscopy, Electron, Transmission , Neoplasms/drug therapy
18.
Bioorg Med Chem ; 22(22): 6401-8, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25438764

ABSTRACT

Peptides are of great interest to be used as vaccine antigens due to their safety, ease of manufacturing and specificity in generating immune response. There have been massive discoveries of peptide antigens over the past decade. However, peptides alone are poorly immunogenic, which demand co-administration with strong adjuvant to enhance their immunogenicity. Recently, fibril-forming peptides such as Q11 and lipoamino acid-based carrier have been identified to induce substantial immune responses when covalently linked to peptide epitope. In this study, we have incorporated either Q11 or lipoamino acids to a peptide epitope (J14) derived from M protein of group A streptococcus to develop self-adjuvanting vaccines. J14, Q11 and lipoamino acids were also conjugated together in a single vaccine construct in an attempt to evaluate the synergy effect of combining multiple adjuvants. Physicochemical characterization demonstrated that the vaccine constructs folded differently and self-assembled into nanoparticles. Significantly, only vaccine constructs containing double copies of lipoamino acids (regardless in conjugation with Q11 or not) were capable to induce significant dendritic cells uptake and subsequent J14-specific antibody responses in non-sizes dependent manners. Q11 had minimal impact in enhancing the immunogenicity of J14 even when it was used in combination with lipoamino acids. These findings highlight the impact of lipoamino acids moiety as a promising immunostimulant carrier and its number of attachment to peptide epitope was found to have a profound effect on the vaccine immunogenicity.


Subject(s)
Adjuvants, Immunologic/chemistry , Lipopeptides/chemistry , Streptococcus pyogenes/metabolism , Vaccines, Synthetic/chemistry , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Circular Dichroism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Enzyme-Linked Immunosorbent Assay , Epitopes/chemistry , Epitopes/immunology , Female , Immunoglobulin G/analysis , Lipopeptides/immunology , Macrophages/immunology , Macrophages/metabolism , Mice , Microscopy, Electron, Transmission , Molecular Sequence Data , Vaccines, Synthetic/immunology
19.
Hum Vaccin Immunother ; 10(3): 778-96, 2014.
Article in English | MEDLINE | ID: mdl-24300669

ABSTRACT

Peptide-based subunit vaccines are of great interest in modern immunotherapy as they are safe, easy to produce and well defined. However, peptide antigens produce a relatively weak immune response, and thus require the use of immunostimulants (adjuvants) for optimal efficacy. Developing a safe and effective adjuvant remains a challenge for peptide-based vaccine design. Recent advances in immunology have allowed researchers to have a better understanding of the immunological implication of related diseases, which facilitates more rational design of adjuvant systems. Understanding the molecular structure of the adjuvants allows the establishment of their structure-activity relationships which is useful for the development of next-generation adjuvants. This review summarizes the current state of adjuvants development in the field of synthetic peptide-based vaccines. The structural, chemical and biological properties of adjuvants associated with their immunomodulatory effects are discussed.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/isolation & purification , Vaccines, Subunit/immunology , Drug Discovery/trends , Humans , Vaccines, Subunit/administration & dosage
20.
Molecules ; 18(11): 13148-74, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24284482

ABSTRACT

The copper (I)-catalyzed alkyne azide 1,3-dipolar cycloaddition (CuAAC) or 'click' reaction, is a highly versatile reaction that can be performed under a variety of reaction conditions including various solvents, a wide pH and temperature range, and using different copper sources, with or without additional ligands or reducing agents. This reaction is highly selective and can be performed in the presence of other functional moieties. The flexibility and selectivity has resulted in growing interest in the application of CuAAC in various fields. In this review, we briefly describe the importance of the structural folding of peptides and proteins and how the 1,4-disubstituted triazole product of the CuAAC reaction is a suitable isoster for an amide bond. However the major focus of the review is the application of this reaction to produce peptide conjugates for tagging and targeting purpose, linkers for multifunctional biomacromolecules, and reporter ions for peptide and protein analysis.


Subject(s)
Click Chemistry/methods , Copper/chemistry , Peptides/chemistry , Alkynes/chemistry , Azides/chemistry , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...