Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37764252

ABSTRACT

Graphitic carbon nitride (gCN) materials have been shown to efficiently perform light-induced water splitting, carbon dioxide reduction, and environmental remediation in a cost-effective way. However, gCN suffers from rapid charge-carrier recombination, inefficient light absorption, and poor long-term stability which greatly hinders photocatalytic performance. To determine the underlying catalytic mechanisms and overall contributions that will improve performance, the electronic structure of gCN materials has been investigated using electron paramagnetic resonance (EPR) spectroscopy. Through lineshape analysis and relaxation behavior, evidence of two independent spin species were determined to be present in catalytically active gCN materials. These two contributions to the total lineshape respond independently to light exposure such that the previously established catalytically active spin system remains responsive while the newly observed, superimposed EPR signal is not increased during exposure to light. The time dependence of these two peaks present in gCN EPR spectra recorded sequentially in air over several months demonstrates a steady change in the electronic structure of the gCN framework over time. This light-independent, slowly evolving additional spin center is demonstrated to be the result of oxidative processes occurring as a result of exposure to the environment and is confirmed by forced oxidation experiments. This oxidized gCN exhibits lower H2 production rates and indicates quenching of the overall gCN catalytic activity over longer reaction times. A general model for the newly generated spin centers is given and strategies for the alleviation of oxidative products within the gCN framework are discussed in the context of improving photocatalytic activity over extended durations as required for future functional photocatalytic device development.

2.
Angew Chem Int Ed Engl ; 62(40): e202311389, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37581951

ABSTRACT

The facile synthesis of chiral materials is of paramount importance for various applications. Supramolecular preorganization of monomers for thermal polymerization has been proven as an effective tool to synthesize carbon and carbon nitride-based (CN) materials with ordered morphology and controlled properties. However, the transfer of an intrinsic chemical property, such as chirality from supramolecular assemblies to the final material after thermal condensation, was not shown. Here, we report the large-scale synthesis of chiral CN materials capable of enantioselective recognition. To achieve this, we designed supramolecular assemblies with a chiral center that remains intact at elevated temperatures. The optimized chiral CN demonstrates an enantiomeric preference of ca. 14 %; CN electrodes were also prepared and show stereoselective interactions with enantiomeric probes in electrochemical measurements. By adding chirality to the properties transferrable from monomers to the final product of a thermal polymerization, this study confirms the potential of using supramolecular precursors to produce carbon and CN materials and electrodes with designed chemical properties.

3.
J Mater Chem A Mater ; 10(31): 16585-16594, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36091884

ABSTRACT

The photoelectrochemical oxidation of organic molecules into valuable chemicals is a promising technology, but its development is hampered by the poor stability of photoanodic materials in aqueous solutions, low faradaic efficiency, low product selectivity, and a narrow working pH range. Here, we demonstrate the synthesis of value-added aldehydes and carboxylic acids with clean hydrogen (H2) production in water using a photoelectrochemical cell based solely on polymeric carbon nitride (CN) as the photoanode. Isotope labeling measurements and DFT calculations reveal a preferential adsorption of benzyl alcohol and molecular oxygen to the CN layer, enabling fast proton abstraction and oxygen reduction, which leads to the synthesis of an aldehyde at the first step. Further oxidation affords the corresponding acid. The CN photoanode exhibits excellent stability (>40 h) and activity for the oxidation of a wide range of substituted benzyl alcohols with high yield, selectivity (up to 99%), and faradaic efficiency (>90%).

4.
Angew Chem Int Ed Engl ; 58(42): 14964-14968, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31389652

ABSTRACT

Transition-metal-carbon (CTM) composites show ample activity in many catalytic reactions. However, control of composition, distribution, and properties is challenging. Now, a straightforward path for the synthesis of transition-metal nanoparticles engulfed in crystalline carbon is presented with excellent control over the metal composition, amount, ratio, and catalytic properties. This approach uses molten monomers that coordinate metals ions at high temperature. At high temperatures, strong coordination bonds direct the growth of carbon material with homogeneous metals distribution and with negligible losses, owing to the liquid-like reaction compared to the traditional solid-state reaction. The strength of the approach is demonstrated by the synthesis of mono, binary, and trinary transition-metal-crystalline-carbon composites with tunable and precise elemental composition as well as good electrochemical properties as oxygen evolution reaction electrocatalysts.

5.
RSC Adv ; 9(45): 26091-26096, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-35530998

ABSTRACT

Structural modifications in carbon nitrides and related carbon-based materials have been achieved in recent years by organizing their monomers into versatile supramolecular structures that serve as reactants for the high temperature solid-state reaction. To date, the organization is usually carried out in one solvent where the building blocks must be dispersed. Here, we show the utilization of a molecule with both hydrogen bond donor and acceptor sites for constructing hydrogen bonded frameworks in interfacial systems. The chemical and electronic properties of the carbon nitride materials after calcination are strongly altered showing enhanced photocatalytic performance in different model reactions. This work shows a new large-scale pathway for the synthesis of highly photoactive carbon nitride with tailored properties and morphology by employing novel supramolecular assemblies prepared in the interface between two solvents, and furthermore opens new opportunities in the rational design of different carbon-nitrogen based materials utilizing supramolecular structures.

6.
Chemistry ; 24(56): 14921-14927, 2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30044016

ABSTRACT

A new and simple synthetic route is introduced to covalently functionalize the carbon nitride (CN) framework by the implementation of halogenated phenyl groups (Cl, Br and I), which serve as a chemically reactive center, within the CN framework. The covalent modification is demonstrated here by substituting phenyl and tert-butyl propionate onto the modified-CN framework through Suzuki and reductive-Heck cross-coupling reactions, respectively. The effective functionalization leads to a facile exfoliation of the CN framework into thinner layers and greatly enhances the dispersibility in many solvents as well as the photocatalytic activity compared to the unmodified CN. The general covalent modification opens the possibility for tailor-made design of dispersible CN materials, including their photophysical and chemical properties, toward their exploitation in many fields, such as photocatalysis, bio-imaging, sensing, and heterogeneous catalysis.

7.
Small ; 14(21): e1800516, 2018 05.
Article in English | MEDLINE | ID: mdl-29667306

ABSTRACT

2D carbon and nitrogen based semiconductors (CN) have attracted widespread attention for their possible use as low-cost and environmentally friendly materials for various applications. However, their limited solution-dispersibility and the difficulty in preparing exfoliated sheets with tunable photophysical properties restrain their exploitation in imaging-related applications. Here, the synthesis of carbon and nitrogen organic scaffolds with highly tunable optical properties, excellent dispersion in water and DMSO, and good bioimaging properties is reported. Tailored photophysical and chemical properties are acquired by the synthesis of new starting monomers containing different substituent chemical groups with varying electronic properties. Upon monomer condensation at moderate temperature, 350 °C, the starting chemical groups are fully preserved in the final CN. The low condensation temperature and the effective molecular-level modification of the CN scaffold lead to well-dispersed photoluminescent CN thin sheets with a wide range of emission wavelengths. The good bioimaging properties and the tunable fluorescence properties are exemplified by in situ visualization of giant unilamellar vesicles in a buffered aqueous solution as a model system. This approach opens the possibility for the design of tailor-made CN materials with tunable photophysical and chemical properties toward their exploitation in various fields, such as photocatalysis, bioimaging, and sensing.

SELECTION OF CITATIONS
SEARCH DETAIL
...