Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 90(1): 19-29, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21177439

ABSTRACT

Hot conditions decrease the difference between ambient temperature (AT) and the average temperature of the body surface. A smaller difference reduces the rate of sensible heat loss of excessive internal heat, elevates the body temperature (BT), and may lead to mortality during heat waves. Under conditions of chronic heat, broilers avoid lethal BT elevation by reducing their feed intake; consequently, growth rate and meat yield are lower. Practices to avoid hot conditions are costly, whereas breeding for heat tolerance offers a sustainable approach. Being featherless was shown to provide heat tolerance; this was reevaluated in experimental broilers with a growth rate similar to that of contemporary commercial broilers. In experiment 1, 26 featherless birds and 49 feathered siblings (sibs) were reared at warm AT and exposed to moderate and acute heat waves. The featherless birds maintained normal BT under a moderate heat wave, with a slight elevation under an acute heat wave, and only 1 bird died. In contrast, the heat waves led to a significant elevation in BT of the feathered sibs, and 34% of them died. In experiment 2, featherless broilers were compared with feathered sibs and commercial broilers at 2 AT treatments: a constant temperature of 25°C (control AT) or a constant temperature of 35°C (hot AT). The birds were reared to 46 or 53 d at the control and hot AT, respectively, and the measured traits included BT, growth, and weight of the whole body and carcass parts (breast meat, legs, wings, and skin). At the hot AT, only the featherless broilers maintained a normal BT; their mean d 46 BW (2,031g) was significantly higher than that of birds maintained at the control AT, and it increased to 2,400 g on d 53, much higher than the corresponding means of all feathered broilers (approximately 1,700 g only). Featherless broilers had significantly higher breast meat yield (approximately 20% in both AT), lower skin weight, and supposedly better wing quality. These results confirmed that being featherless improved the livability and performance of fast-growing broilers in hot conditions and suggests that introduction of the featherless phenotype into commercial broiler stocks would facilitate highly efficient yet low-cost production of broiler meat under hot conditions.


Subject(s)
Body Temperature Regulation/physiology , Chickens/genetics , Chickens/physiology , Feathers/physiology , Hot Temperature , Aging , Animal Husbandry , Animals , Body Composition , Body Weight , Chickens/growth & development , Female , Male
2.
Poult Sci ; 87(12): 2517-27, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19038808

ABSTRACT

Under hot conditions, contemporary commercial broilers do not reach their full genetic potential for growth rate, body weight (BW), or breast meat yield because dissipation of their excessively produced internal (metabolic) heat is hindered by the feathers. Therefore, it was hypothesized that heat stress can be alleviated by using the naked-neck gene (Na) or the featherless gene (sc). The study consisted of 4 experimental genetic groups (fully feathered, heterozygous naked neck, homozygous naked neck, featherless), progeny of the same double-heterozygous parents (Na/na +/sc), and commercial broilers. Birds from all 5 groups were brooded together until d 21 when one-half of the birds from each group were moved to hot conditions (constant 35 degrees C), and the others remained under comfortable conditions (constant 25 degrees C). Individual BW was recorded from hatch to slaughter at d 45 and 52 at 25 and 35 degrees C, respectively, when breast meat, rear part, heart, and spleen weights were recorded. Body temperature was recorded weekly from d 14 to 42. Feather coverage significantly affected the thermoregulatory capacity of the broilers under hot conditions. With reduced feather coverage (naked-neck), and more so without any feathers (featherless), the birds at 35 degrees C were able to minimize the elevation in body temperature. Consequently, only the featherless birds exhibited similar growth and BW under the 2 temperature treatments. The naked-neck birds at 35 degrees C showed only a marginal advantage over their fully feathered counterparts, indicating that 20 to 40% reduction in feather coverage provided only limited tolerance to the heat stress imposed by hot conditions. Breast meat yield of the featherless birds was much greater (3.5% of BW, approximately 25% advantage) than that of their partly feathered and fully feathered counterparts and the commercial birds under hot conditions. The high breast meat yield (at both 25 and 35 degrees C) of the featherless broilers suggests that the saved feather-building nutrients and greater oxygen-carrying capacity contribute to their greater breast meat yield. Because of these results, further research on genetically heat-tolerant broilers should focus on the featherless phenotype.


Subject(s)
Chickens/genetics , Chickens/physiology , Feathers/growth & development , Hot Temperature , Animals , Body Temperature , Female , Heart/anatomy & histology , Hematocrit , Housing, Animal , Humidity , Male , Meat , Organ Size , Spleen/anatomy & histology , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...