Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338735

ABSTRACT

The menopause transition is a vulnerable period for developing both psychiatric and metabolic disorders, and both can be enhanced by stressful events worsening their effects. The present study aimed to evaluate whether a cafeteria diet (CAF) combined with chronic variable stress (CVS) exacerbates anxious- or depressive-like behavior and neuronal activation, cell proliferation and survival, and microglia activation in middle-aged ovariectomized (OVX) rats. In addition, body weight, lipid profile, insulin resistance, and corticosterone as an index of metabolic changes or hypothalamus-pituitary-adrenal (HPA) axis activation, and the serum pro-inflammatory cytokines IL-6, IL-ß, and TNFα were measured. A CAF diet increased body weight, lipid profile, and insulin resistance. CVS increased corticosterone and reduced HDL. A CAF produced anxiety-like behaviors, whereas CVS induced depressive-like behaviors. CVS increased serum TNFα independently of diet. A CAF and CVS separately enhanced the percentage of Iba-positive cells in the hippocampus; the combination of factors further increased Iba-positive cells in the ventral hippocampus. A CAF and CVS increased the c-fos-positive cells in the hippocampus; the combination of factors increased the number of positive cells expressing c-fos in the ventral hippocampus even more. The combination of a CAF and CVS generates a slight neuroinflammation process and neuronal activation in a hippocampal region-specific manner and differentially affects the behavior.


Subject(s)
Corticosterone , Insulin Resistance , Menopause , Microglia , Proto-Oncogene Proteins c-fos , Animals , Female , Rats , Anxiety/etiology , Anxiety/psychology , Body Weight , Depression/etiology , Diet/adverse effects , Lipids , Menopause/metabolism , Microglia/metabolism , Stress, Psychological/metabolism , Tumor Necrosis Factor-alpha , Proto-Oncogene Proteins c-fos/metabolism
2.
Front Behav Neurosci ; 16: 836681, 2022.
Article in English | MEDLINE | ID: mdl-35600992

ABSTRACT

Previous reports described the antidepressant-like action of the aqueous extract of pomegranate (Punica granatum: AEPG). Thus we evaluated the effect of AEPG and the main compounds found in the extract, punicalagin (PNCG) and ellagic acid (EA), on forced swimming test and the redox environment (reactive oxygen species [ROS] production, lipoperoxidation [LPX], and cellular function) in the brain of rats treated with 3 weeks post ovariectomy exposed ex vivo to pro-oxidants. Also, we selected PNCG and EA to study their antidepressant-like effects (0.001, 0.01, 0.1, 1.0, and 10 mg/kg) in the forced swimming test and their scavenging capacities in chemical combinatorial assays (expressed as IC50 values). We observed a 2-fold increase in the formation of ROS and LPX in the brain after exposure to FeSO4. However, these effects were significantly attenuated when rats were treated with AEPG, PNCG, and EA (1 mg/kg and 0.010 mg/kg for 14 days). AEPG and EA significantly increased the cellular function values of brains that had been affected by the effect of FeSO4 and with ONOO-. PNCG and EA significantly reduced immobility behavior at the lower doses used in this study. The capacity of scavenging compounds to eliminate radicals was for hydroxyl radical (⋅OH), superoxide anion (O2⋅⁣-), and peroxynitrite (ONOO-) as follows: AEPG > punicalagin > ellagic acid. In conclusion, the AEPG and their active compounds PNCG and EA promote antidepressant-like actions and antioxidant activity as they attenuate oxidative damage and prevent cellular dysfunction in ovariectomized rat brains.

SELECTION OF CITATIONS
SEARCH DETAIL
...