Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38076880

ABSTRACT

Biophysical profiling of primary tumors has revealed that individual tumor cells fall along a highly heterogeneous continuum of mechanical phenotypes. One idea is that a subset of tumor cells is "softer" to facilitate detachment and escape from the primary site, a step required to initiate metastasis. However, it has also been postulated that cells must be able to deform and generate sufficient force to exit into distant sites. Here, we aimed to dissect the mechanical changes that occur during extravasation and organ colonization. Using multiplexed methods of intravital microscopy and optical tweezer based active microrheology, we obtained longitudinal images and mechanical profiles of cells during organ colonization in vivo. We determined that cells were softer, more liquid like upon exit of the vasculature but stiffened and became more solid like once in the new organ microenvironment. We also determined that a YAP mediated mechanogenotype influenced the global dissemination in our in vivo and in vitro models and that reducing mechanical heterogeneity could reduce extravasation. Moreover, our high throughput analysis of mechanical phenotypes of patient samples revealed that this mechanics was in part regulated by the external hydrodynamic forces that the cancer cells experienced within capillary mimetics. Our findings indicate that disseminated cancer cells can keep mutating with a continuum landscape of mechano-phenotypes, governed by the YAP-mediated mechanosensing of hydrodynamic flow.

2.
Trends Cancer ; 9(3): 188-197, 2023 03.
Article in English | MEDLINE | ID: mdl-36494310

ABSTRACT

Metastasis remains the leading cause of cancer lethality. The 'seed/soil' hypothesis provides the framework to explain this cancer phenomenon where the concept of organotropism has been in part mechanistically explained by the properties of the tumor cells and their compatibility with the stromal environment of the distal site. The 'mechanical' hypothesis counters that non-random seeding is driven solely by the circulation patterns and vascular networks of organ systems. We incorporate concepts of mechanobiology and revisit the two hypotheses to provide additional insights into the mechanisms that regulate organ selection during metastatic outgrowth. We focus on the latter stages of the metastatic cascade and examine the role of the endothelium in regulating organ selectivity.


Subject(s)
Neoplasms , Humans , Neoplasms/pathology , Endothelium/pathology
3.
bioRxiv ; 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38313277

ABSTRACT

The microenvironment is an important regulator of intertumoral trafficking and activity of immune cells. Understanding how the immune system can be tailored to maintain anti-tumor killing responses in metastatic disease remains an important goal. Thus, immune mediated eradication of metastasis requires the consideration of organ specific microenvironmental cues. Using a xenograft model of melanoma metastasis in adult zebrafish, we perturbed the dynamic balance between the infiltrating immune cells in the metastatic setting using a suite of different transgenic zebrafish. We employed intravital imaging coupled with metabolism imaging (FLIM) to visualize and map the organ specific metabolism with near simultaneity in multiple metastatic lesions. Of all the MHC complexes examined for brain and skeletal metastases, we determined that there is an organ specific expression of mhc1uba (human ortholog, MR1) for both the melanoma cells and the resident and infiltrating immune cells. Specifically, immune clusters did not express mhc1uba in brain metastatic lesions in immune competent fish. Finally, the differential immune response drove organ specific metabolism where tumor glycolysis was increased in brain metastases compared to skeletal and parental lines as measured using fluorescence lifetime imaging microscopy (FLIM). As MR1 belongs to the MHC class I molecules and is a target of immunotherapeutic drugs, we believe that our data presents an opportunity to understand the relationship between organ specific tumor metabolism and drug efficacy in the metastatic setting.

4.
Biophys Rev (Melville) ; 4(1): 011310, 2023 Mar.
Article in English | MEDLINE | ID: mdl-38510161

ABSTRACT

Cancer cells can travel to other organs via interconnected vascular systems to form new lesions in a process known as metastatic spread. Unfortunately, metastasis remains the leading cause of patient lethality. In recent years, it has been demonstrated that physical cues are just as important as chemical and genetic perturbations in driving changes in gene expression, cell motility, and survival. In this concise review, we focus on the physical cues that cancer cells experience as they migrate through the lymphatic and blood vascular networks. We also present an overview of steps that may facilitate organ specific metastasis.

5.
Int J Mol Sci ; 23(15)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35955878

ABSTRACT

Kisspeptin is an anti-metastatic mediator in many cancer types, acting through its receptor, KISS1R. However, controversy remains regarding its role in breast cancer since both pro- and anti-metastatic roles have been ascribed to it. In KISS1R overexpressing triple-negative breast cancer (TNBC) cells, stimulation has been associated with increased invasion and MMP-9 expression, leading to the suggestion that hormone receptor status determines the metastatic effects of kisspeptin. To assess the veracity of this claim, we compared endogenous KISS1R signalling and physiological output in the hormone receptor-negative MDA-MB-231 and BT-20 cell lines after KP-10 (shortest active kisspeptin peptide) stimulation. MDA-MB-231 cells are metastatic when implanted in mice while BT-20 are not and remain epithelial-like. We show that both cell lines express KISS1R mRNA and respond to KP-10 by elevating calcium mobilisation. However, KP-10 stimulation induced migration of MDA-MB-231, but not BT-20 cells, in a calcium-dependent manner. Moreover, only BT-20 cells responded to KP-10 by increasing ERK phosphorylation in a ß-arrestin-dependent manner. Interestingly, both cell lines displayed different complements of ß-arrestin 1 and 2 expression. Overall, our data shows that, in TNBC, it is not universally true that kisspeptin/KISS1R stimulate migration or pro-metastatic behaviour, as divergent responses were observed in the two TNBC lines tested. Whether this divergence is related to the observed differences in ß-arrestin complements warrants further investigation and may enable further stratification of the ability of kisspeptin to influence breast tumour behaviour.


Subject(s)
Kisspeptins , Triple Negative Breast Neoplasms , Animals , Calcium , Estrogens , Humans , Kisspeptins/pharmacology , Mice , Receptors, Estrogen/genetics , Receptors, Kisspeptin-1/genetics , Triple Negative Breast Neoplasms/genetics , beta-Arrestin 1 , beta-Arrestins
SELECTION OF CITATIONS
SEARCH DETAIL
...