Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Biol Med ; 194: 114-122, 2023 01.
Article in English | MEDLINE | ID: mdl-36442586

ABSTRACT

2,2,6,6-Tetramethylpiperidin-N-oxyl (TEMPO)-type nitroxides are susceptible to bioreduction, leading to a loss of radical properties. Although it has been reported that the steric and electronic environments around the N-O moiety of nitroxides affect the reduction, how the relative configuration of nitroxide derivatives alters it is unclear. In this study, we investigated the effect of diastereomers on the radical properties of C2- and C4-disubstituted TEMPO-type nitroxides. We succeeded in isolating the diastereomers of the studied nitroxides for the first time. In addition, we compared the reactivities of nitroxide derivatives with different substituents at the C2 and C4 positions toward ascorbate reduction. We found that the bulky substituents at both C2 and C4 and the electronic effect of C4 affected the reduction of the isomers. C2- and C4-disubstituted nitroxides were administered to mice for electron spin resonance imaging to assess bioreduction in the brain. Similar to the reactivity to reduction in vitro, a difference in the bioreduction of diastereomers was observed in brain tissues. Our research strongly indicates that bioreduction can be controlled by changing the relative configuration, which can be used in the design of nitroxide derivatives for biological applications.


Subject(s)
Ascorbic Acid , Cyclic N-Oxides , Mice , Animals , Electron Spin Resonance Spectroscopy/methods , Nitrogen Oxides , Spin Labels , Oxidation-Reduction
2.
Free Radic Biol Med ; 163: 297-305, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33359688

ABSTRACT

It is well known that lipid carbon radicals (lipid radicals) are the origin of lipid peroxidation and are involved in various diseases such as cancer. Therefore, the in vivo detection of lipid radicals would be expected to lead to early diagnosis of these diseases. However, there are no methods for measuring lipid radicals in vivo. Nitroxides are known to be highly reactive with lipid radicals, but they tend to be reduced in vivo. Focusing on the excellent detection sensitivity of nuclear medical imaging, we have developed a radioiodinated nitroxide derivative with resistance to bioreduction for the in vivo detection of lipid radicals. The desired compound was obtained successfully and was highly stable against bioreduction while maintaining high reactivity toward lipid radicals. The I-125 labeling was efficacious with radiochemical yields of 84-87% and radiochemical purities of >99%. A cellular uptake assay showed that the radioiodinated compound was significantly taken up by cells under lipid radical-producing conditions compared to that in the absence of lipid radical production. A biodistribution study indicated that the radioiodinated compound accumulated more in organs where lipid peroxidation was promoted than the methoxyamine derivative, which lost reactivity to lipid radicals. These results indicated that the developed probe became trapped in cells or organs by reacting with lipid radicals. Thus, the radioiodinated nitroxide is a candidate probe for in vivo detection of lipid radicals.


Subject(s)
Antioxidants , Iodine Radioisotopes , Cyclic N-Oxides , Electron Spin Resonance Spectroscopy , Free Radicals , Lipids , Nitrogen Oxides , Tissue Distribution
3.
ACS Med Chem Lett ; 11(1): 45-48, 2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31938462

ABSTRACT

Thus far, no accurate measurement technology has been developed to detect lipid alkyl radicals (lipid radicals), which cause lipid peroxidation. Therefore, we aimed to develop a nuclear medical imaging probe that can be taken up in the lipophilic site in cells such as biological membranes, by reacting specifically with the lipid radicals generated there. We designed and synthesized 4-(4-[125I]iodobenzamido)-2,2,6,6-tetramethylpiperidine-1-oxyl, which shows high reactivity to lipid radicals with a high radiochemical yield and purity. Intracellular retention was found to increase significantly when lipid radicals were produced.

SELECTION OF CITATIONS
SEARCH DETAIL
...